Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
88
Добавлен:
24.02.2016
Размер:
1.47 Mб
Скачать

I уровень

1.1. Определите, принадлежит ли точка графику функции

1) 2)

3) 4)

1.2. Найдите область определения функции:

1)2)

3) 4)

1.3. Постройте график функции и определите область ее значений:

1) 2)3)4)

II уровень

2.1. Найдите область определения функции:

1) 2)3)

4) 5)

2.2. Постройте график функции:

1) 2)

3) 4)

III уровень

3.1. Найдите область определения функции:

1) 2)

3) 4)

3.2. Найдите функцию, обратную данной. Укажите область определения и область значений обеих функций. Постройте графики данной функции и обратной в одной системе координат:

1) 2)

3.3. Найдите множество значений функции:

1) 2)

5.4. Иррациональные уравнения

Иррациональным уравнением называется уравнение, содержащее неизвестную под знаком корня или под дробным показателем. (В этом параграфе термин «корень» будет соответствовать операции извлечения корня с определенным показателем, в отличие от термина «решение»).

Основной метод решения таких уравнений – возведение обеих частей уравнения в одну и ту же степень, чтобы корни исчезли. Иногда приходится возводить в степень несколько раз. При этом следует анализировать, какие корни надо оставлять в левой части уравнения, а какие корни перенести в правую часть (если корней несколько). От этого часто зависит рациональность решения.

Поскольку корни нечетной степени определены для любых по знаку подкоренных выражений и принимают любые по знаку значения, то возведение уравнения в нечетную степень является равносильным преобразованием (т. е. мы не теряем решений и не получаем посторонних).

Корни с четным показателем определены дляf(x)  0. Возведение уравнения, содержащего такие корни, в четную степень может изменить ОДЗ уравнения и привести к посторонним решениям. В таком случае итоговым моментом в решении уравнения является проверка полученных решений подстановкой в заданное уравнение. Проверка решения по ОДЗ такого уравнения недостаточна.

ОДЗ иррационального уравнения следует находить в том случае, если предполагается, что она состоит только из нескольких чисел или может быть пустым множеством. Если ОДЗ состоит из одного, двух и т. д. чисел, то уравнение можно не решать, а эти числа проверять (являются ли они решением) подстановкой в заданное уравнение.

Если ОДЗ есть пустое множество, то уравнение не имеет решений.

При решении иррациональных уравнений используют также метод замены переменной и другие методы.

Если имеется уравнение вида гдес  0, то оно не имеет решений, так как корни с четным показателем понимаем в арифметическом смысле, т. е. как неотрицательные.

Некоторые типы иррациональных уравнений

Пусть далее – некоторые выражения с неизвестнойх,

I тип: уравнение вида

(5.1)

Возведение в -ю степень приводит к равносильному уравнению

Уравнение

(5.2)

после возведения в -ю степень сводится к равносильному уравнению

Уравнение

(5.3)

после возведения в степень 2n приводит к уравнению-следствию

(5.4)

Найденные корни уравнения (5.4) проверяют подстановкой в уравнение (5.3) и отбирают те из них, которые удовлетворяют уравнению (5.3).

Уравнение

(5.5)

после возведения в степень 2n сводится к уравнению-следствию

(5.6)

Корни уравнения (5.6) необходимо проверить подстановкой в уравнение (5.5).

II тип: уравнение вида

(5.7)

где

1-й способ. Необходимо возвести уравнение (5.7) в квадрат. В определенных случаях следует один из корней перенести в правую часть уравнения. После упрощения полученное уравнение возводят в квадрат еще раз.

2-й способ. Умножение уравнения (5.7) на сопряженное выражение

Отдельно проверяют, имеет ли решение уравнение h(x) = 0. Затем для h(x)  0 рассматривают систему

Сложение уравнений этой системы приводит к уравнению вида (5.3).

3-й способ. Замена переменных

и переход к системе уравнений относительно u, v.

Уравнение

(5.8)

где a, bR, возведением в куб обеих частей сводится к уравнению

(5.9)

Выражение в скобках (в левой части уравнения (5.9)) заменяют на используя заданное уравнение. В итоге заданное уравнение (5.8) приводится к уравнению-следствию, которое снова возводят в куб.

Полученные таким образом решения необходимо проверить подстановкой в уравнение (5.8).

III тип: уравнения, решаемые заменой переменной.

В результате замены может уменьшиться степень выражений, стоящих под корнями, что приведет к уменьшению степени рационального уравнения после избавления от корней.

Если уравнение имеет вид

(5.10)

где Fнекоторое алгебраическое выражение относительно то заменойоно сводится к уравнению

(5.11)

После решения уравнения (5.11) возвращаются к старой переменной и находят решения уравнения (5.10).

IV тип: уравнения, решаемые исходя из арифметического смысла корней с четными показателями. В частности, решение уравнения

(5.12)

где a > 0, b > 0, сводится к решению системы

V тип: уравнения, решаемые функциональными методами и методами, основанными на ограниченности входящих в уравнение функций.

Решение уравнений основывается на следующих утверждениях.

1. Если идля всех, то на множествеX уравнение f(x) = g(x) равносильно системе уравнений

2. Если функции f(x) и g(x) непрерывны и f(x) возрастает, а g(x) убывает для x  X, то уравнение f(x) = g(x) имеет не больше одного решения на промежутке X. Если один корень подобрать, то других корней нет.

3. Если f(x) – возрастающая функция, то уравнение равносильно уравнению

4. Если f(x) – возрастающая (убывающая) функция, то уравнение равносильно уравнению

Пример 1. Решить уравнение

Решение. Возведем обе части уравнения в квадрат:

Приводим подобные. При этом в левой части уравнения записываем корень, остальные слагаемые – в правой части:

Возводим полученное уравнение в квадрат еще раз:

Решая последнее квадратное уравнение, находим корни которые теперь необходимо проверить. Делаем проверку корней подстановкой в исходное уравнение. Первый корень не подходит.

Приходим к ответу:

Пример 2. Решить уравнение

Решение. Возведем обе части уравнения в куб:

Воспользовавшись исходным уравнением, заменим выражение выражениемПолучаем:

Решаем совокупность уравнений

В результате замены выражения могут появиться посторонние корни, так как такое преобразование не является равносильным. Поэтому необходимо произвести проверку. Подставляем найденные значения и убеждаемся, что они являются корнями исходного уравнения.

Приходим к ответу:

Пример 3. Решить уравнение

Решение. Возведение уравнения в квадрат приводит к уравнению четвертой степени и громоздкому решению.

Нетрудно заметить, что в данном уравнении можно произвести замену. Но перед этим преобразуем уравнение следующим образом:

Заменив получаем квадратное уравнение

Решая его, находим корни

Возвращаемся к исходной неизвестной:

Первое уравнение решений не имеет, так как его левая часть неотрицательна, а правая – отрицательна. Второе уравнение возводим в квадрат. Получаем:

т. е.

Его корни С помощью проверки убеждаемся, что оба корня подходят, т. е. приходим к ответу:

Пример 4. Решить уравнение

Решение. 1-й способ. Перенесем второй корень вправо:

Возводим обе части в квадрат:

Еще раз возводим в квадрат и получаем квадратное уравнение, решая которое и получаем корни Делаем проверку корней подстановкой в исходное уравнение. Оба корня подходят.

2-й способ. Введем замену тогда Таким образом получили более простое уравнение

т. е.

Возведем его в квадрат:

Возвращаемся к исходной неизвестной:

Возводим обе части уравнения в квадрат:

откуда

При помощи проверки убеждаемся, что оба корня подходят.

3-й способ. Домножим обе части уравнения на выражение, сопряженное левой части исходного уравнения. Получим:

Сложим последнее уравнение с исходным. Получим:

т. е.

Последнее уравнение возводим в квадрат. Получаем квадратное уравнение

Решая его, находим корни

Приходим к ответу:

Пример 5. Решить уравнение

Решение. Пусть Тогда и по условию.

Получили систему

Решаем ее методом подстановки:

Второе уравнение решим отдельно

Получаем корни:

Возвращаемся к системе:

Получаем:

Переходим к заданным неизвестным:

Решая последнюю совокупность, находим корни иС помощью проверки убеждаемся, что оба корня подходят.

Получили ответ:

При решении иррациональных уравнений, как правило, нахождение ОДЗ является бесполезным, так как проверка решений по ОДЗ недостаточна. Но существует ряд примеров, в которых нахождение ОДЗ является тем методом, который приводит к успеху. Покажем это на следующем примере.

Пример 6. Решить уравнение

Решение. Найдем ОДЗ данного уравнения:

Решаем последнюю систему неравенств графически (рис. 5.10).

Рис. 5.10

Получили, что ОДЗ состоит из единственной точки

Остается подставить значение в уравнение и выяснить, является ли оно решением:

Получили, что – решение.

Пример 7. Решить уравнение

Решение. Используем графический способ. Строим графики функций (рис. 5.11).

Рис. 5.11

Из рисунка видно, что графики пересекаются в единственной точке x = 7. Следовательно, уравнение имеет единственное решение. Проверяем x = 7 подстановкой в заданное уравнение и убеждаемся, что это точное значение решения уравнения.

Получили ответ: x = 7.

Задания