Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

ФПНЭВ / chapter_05

.html
Скачиваний:
5
Добавлен:
24.02.2016
Размер:
22.59 Кб
Скачать

 Тема 5 Электронный учебно-методический комплекс по дисциплине«ПЕРВИЧНЫЕ ИЗМЕРИТЕЛЬНЫЕ ПРЕОБРАЗОВАТЕЛИ И ИХ ПРИМЕНЕНИЕ

В СИСТЕМАХ ОБЕСПЕЧЕНИЯ БЕЗОПАСНОСТИ»для специальности: «1-38 02 03 Техническое обеспечение безопасности». Оглавление | Программа | Теория | Практика | Контроль знаний | Об авторах Оглавление Теория Содержание

Раздел 1 Тема 1

Тема 2

Раздел 2 Тема 3

Тема 4

Тема 5

Тема 6

Тема 7

Тема 8

Тема 9

Тема 10

Тема 11

Тема 12

Раздел 3 Тема 13 Тема 14

Тема 15

Раздел 4 Тема 16

Тема 17

Тема 18

Раздел 5 Тема 19

Тема 20

Тема 21

Практика Лабораторные Лабораторная №1 Лабораторная №2 Лабораторная №3 Лабораторная №4 Практиктические Практиктическая №1 Практиктическая №2

Контроль знаний

Раздел 2: "Основные физические принципы функционирования датчиков" Тема 5: "ЭффектХолла. Эффект Зеебека" Эффект Холла основан на взаимодействии между движущимися носителями электрического заряда и внешним магнитным полем. В металлах носителями зарядов являются электроны. При движении электронов в магнитном поле на них действует отклоняющая сила:

F = qvB  (3.84)

где q= 1.6 x10 |9Кл — величина заряда электрона, v — его скорость, а В — магнитная индукция. Выделенный шрифт указывает на то, что F и В являются векторами. Направление силы и ее величина зависят от пространственного расположения магнитного потока и направления движения электрона. Единицей измерения В является тесла: 1 Тесла = 1 Ньютон/(амперхметр) = 104 Гаусс.

Рис. 3.30. Датчик Холла. Магнитное поле отклоняет движущийся электрический заряд  

Предположим, что электроны двигаются внутри электропроводной пластины, помещенной в магнитное поле В (рис. 3.30). На две стороны пластины нанесены дополнительные электроды, подключенные к вольтметру. Еще два электрода расположены сверху и снизу пластины, они подсоединены к источнику электрического тока. Из-за действия внешнего магнитного поля возникает отклоняющая сила, смещающая электроны ближе к правому краю пластины, поэтому эта сторона становится более отрицательно заряженной, чем левая. Очевидно, что вследствие взаимодействия магнитного поля и электрического тока возникает поперечная разность потенциалов, получившая название напряжение Холла VнЗнак и амплитуда этого напряжения зависят как от величины, так и направления магнитного и электрического полей. При фиксированной температуре оно определяется выражением:

  (3.85)

где α — угол между вектором магнитного поля и плоскостью пластины Холла (рис. 3.31), ah— полная чувствительность датчика, на значение которой влияют тип материала пластины, ее геометрия (площадь активной зоны) и температура.

Полная чувствительность датчика Холла зависит от коэффициента Холла, который определяется градиентом поперечного электрического потенциала на единицу интенсивности магнитного поля и на единицу плотности тока. В соответствии с теорией свободных электронов в металлах, коэффициент Холла можно найти при помощи выражения:

   (3.86)

гдеN — число свободных электронов в единице объема, а с — скорость света.

В зависимости от кристаллической структуры материала заряды могут быть либо электронами (отрицательными), либо дырками (положительными). Поэтому и эффект Холла бывает либо положительным, либо отрицательным

(А)                                      (Б)

Рис. 3.31. А — выходной сигнал датчика Холла зависит от угла между вектором магнитного поля и плоскостью пластины, Б — четыре вывода датчика Холла

Рис.3.32 Эквивалентная схема датчика Холла

 

Линейный датчик Холла обычно размещается в корпусе с четырьмя выводами. Два вывода для подключения тока управления называются управляющими выводами, а сопротивление между ними — сопротивлением управляющей цепи RВыводы для измерения выходного напряжения называются дифференциальными выходами, а сопротивление между ними — выходным дифференциальным сопротивлением R0. Эквивалентную схему датчика Холла (рис. 3.32) можно представить в виде узлового соединения 4-х резисторов и двух источников напряжения, включенных последовательно с выходными выводами. Знак   на рис. 3.31Б и 3.32 указывает на то, что вектор В направлен от наблюдателя.

Датчик характеризуется следующими параметрами", сопротивлениями Л и Rg ,напряжением смещения  при отсутствии магнитного поля, чувствительностью и температурным коэффициентом чувствительности.

"Эффекты Зеебекаи Пельтье" Если взять проводник, и один его конец поместить в холодное место, а другой — в теплое, от теплого участка к холодному будет передаваться тепловая энергия. Интенсивность теплового потока при этом пропорциональна теплопроводности проводника. В дополнение к этому, градиент температур приводит к появлению в проводнике электрического поля, обусловлено эффектом Томсона (В. Томпсон открыл этот эффект приблизительно в 1850 году. Он заключается в поглощении или высвобождении тепла линейно пропорционально току, проходящего через однородный проводник, имеющий градиент температуры вдоль его длины. При этом тепло поглощается, если ток и тепловой поток направлены в противоположных направлениях, и выделяется — когда они имеют одинаковое направление). Индуцированное электрическое поле приводит к появлению разности потенциалов:

   (3.87)

где dT — градиент температуры на небольшом участке длины dx, α а — абсолютный коэффициент Зеебекаматериала [30]. Если материал однородный, α ане зависит от его длины, и уравнение (3.87) принимает вид:

  (3.88)

Если контур выполнен из одинакового материала, то тока в цепи не будет, даже при неравномерной температуре вдоль его длины. Поскольку в этом случае две половины контура создадут токи равной величины, но противоположного направления, которые взаимно уничтожат друг друга. Термоэ.д.с. возникает в любом проводнике с неравномерной температурой, но ее часто невозможно измерить напрямую.

(А)                                                                        (Б)

Рис. 3.34. А — опыт Зеебека, Б — переменная температура вдоль проводника является причиной возникновения термо э.д.с

Рис. 3.35. Термоэлектрический контур: А — соединение идентичных металлов не приводит к появлению тока при любой разности температур, Б — соединение разных металлов индуцирует ток

Рис.3.37 Эффект Пельтье  

В настоящее время эффект Зеебека применяется в интегрированных датчиках, в которых соответствующие пары материалов наносятся на поверхность полупроводниковых подложек. Примером таких датчиков является термоэлемент для обнаружения тепловых излучений. Поскольку кремний обладает достаточно большим коэффициентом Зеебека, на его основе изготавливаются высокочувствительные термоэлектрические детекторы. Эффект Зеебека связан с температурной зависимостью энергии Ферми Ерпоэтому коэффициент Зеебека для кремния n-типа можно аппроксимировать функцией от электрического удельного сопротивления в интересующем температурном диапазоне (для датчиков при комнатной температуре):

                                                                                              (3.94)

где ρ0≈5х10-6Ом×м и т≈2.5 являются константами, k— постоянная Больцмана, aq— электрический заряд.

При помощи легирующих добавок получают материалы с коэффициентами Зеебека порядка 0.3...0.6 мВ/К.

В начале девятнадцатого века французский часовщик, в последствии ставший физиком, Жан Шарль АтанасПельтье (1785-1845) обнаружил, что при прохождении электрического тока из одного материала в другой, в месте их соединения происходит либо выделение, либо поглощение тепла [33], что зависит от направления тока:

  (3.95)

гдеi — сила тока, at— время. Коэффициент р имеет размерность напряжения и определяется термоэлектрическими свойствами материала. Следует отметить, что количество тепла не зависит от температуры других соединений.

Эффект Пельтье — это выделение или поглощение тепла при прохождении электрического тока через соединение двух различных металлов. Это явление характерно и для случаев, когда ток поступает от внешних источников, и когда он индуцируется в спае термопары из-за эффекта Зеебека.

Эффект Пельтье используется в двух ситуациях: когда надо либо подвести тепло к месту соединения материалов, либо отвести его, что осуществляется изменением направления тока. Это свойство нашло свое применение в устройствах, где требуется осуществлять прецизионный контроль за температурой. Считается, что эффекты Пельтье и Зеебека имеют одинаковую природу. Однако следует хорошо понимать, что тепло Пелътье и Джоуля отличаются друг от друга. Тепло Пельтье в отличие от джоулева тепла линейно зависит от силы тока. (Тепло Джоуля выделяется при прохождении электрического тока любого направления через проводник, имеющий конечное сопротивление. Высвобождаемая при этом тепловая энергия пропорциональна квадрату тока: Р= i2/R, где R — сопротивление проводника).

 

(С) БГУИР

Соседние файлы в папке ФПНЭВ