Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
основы химиотерапии инф бол.doc
Скачиваний:
84
Добавлен:
23.02.2016
Размер:
176.64 Кб
Скачать

Важнейшие группы антибиотиков и механизмы их противомикробного действия.

  1. Антибиотики, подавляющие синтез бактериальной клеточной стенки.

К данной группе относятся пенициллины, цефалоспорины, циклосерин.

Пенициллины. Продуцентами пенициллинов являются плесне­вые грибы рода Penicillium, которые в процессе своей жизнедеятель­ности образуют несколько видов пенициллинов. Наиболее активным природным соединением является бензилпенициллин.

Остальные виды пенициллинов отличаются от него тем, что вме­сто бензильного радикала (С2Н5—СН2—) содержат другие. Основной частью молекулы всех пенициллинов является 6-аминопенициллановая кислота. Путем присоединения к пенициллановой кислоте вместо бензильного различных других ради­калов были получены полусинтетические пенициллины нескольких поколений, отличающиеся друг от друга антибактериальными спект­рами, устойчивостью к пенициллиназе и фармакологическими свой­ствами.

К 1-му поколению относят:

а) природные пенициллины — бен­зилпенициллин;

б) пенициллиназоустойчивые полусинтетические пенициллины — метициллин, оксациллин, клоксациллин;

в) аминопенициллины с расширенным антибактериальным спект­ром — ампициллин, амоксициллин, циклоциллин и др.

Ко 2-3-му поколениям относят карбоксипенициллины: карбенициллин, тикарциллин и др.

К 4-му поколению относят пенициллины с широким антибактериальным спектром: а) уреидопенициллины — мезлоциллин, азлоциллин, пиперациллин и др.;

б) амидинопенициллины — мециллам и др.

Пенициллиназа относится к ферментам бета-лактамной группы, вызывающим расщепление бета-лактамного коль­ца с образованием неактивной бензилпенициллановой кислоты. Синтез данного фермента контролиру­ется R-плазмидами многих видов бактерий. Устойчивость метициллина, оксациллина и других полусинтетических пенициллинов к пенициллиназе связана с защитой бета-лактамного кольца от дан­ного фермента.

Особый интерес приобретают фиксированные комбинации пени­циллинов с ингибиторами β-лактамаз. К ним относятся препараты из группы клавулановой кислоты (амоксиклав) и производные сульфонов пенициллановой кислоты (сульбактам, тазобактам). Эти комбинации позволяют устранить многие недостатки пенициллинов при сохранении их достоинств.

Резистентность стафилококков к пенициллинам связана с продук­цией пенициллиназы, а грамотрицательных бактерий — с данным ферментом, а также с особенностями структуры и химического состава в клеточных стенках

Антибактериальный спектр пенициллины 1-го поколения имеют сравнительно узкий: природные антибиотики (бензилпенициллин) действуют преимущественно на гноеродные кокки и некоторые грамположительные бактерии (палочки дифтерии, клостридии и др.). Типичными представителями противостафилококковых пенициллинов являются оксациллин, метициллин и другие препара­ты, устойчивые к пенициллиназе. У аминопенициллинов и карбоксипенициллинов антибактериальный спектр расширен за счет ряда грамотрицательных бактерий (прежде всего энтеробактерий). Уреидопеницилинны активны в отношении некоторых других грамотрицательных бактерий, в частности псевдомонад. Это объясняется их способностью проникать через липополисахарид клеточных стенок грамотрицательных бактерий.

Механизм антибактериального дейст­вия всех пенициллинов связан с нарушением синтеза клеточной стенки за счет блокирования синтеза пептидогликана (муреина). Таким образом, пеницил­лин действует только на растущие клетки, в которых осуществляются процессы биосинтеза пептидогликана. Вследствие отсутствия пепти­догликана в клетках человека пенициллин не оказывает на них ингибирующего действия (отсутствие «мишени»), т.е. является практичес­ки нетоксичным антибиотиком.

Цефалоспорины — большая группа природных антибиотиков, продуцируемых грибами рода Cephalosporium, и их полусинтетичес­ких производных. Основным структурным компонентом цефалоспоринов является 7-аминоцефалоспориновая кислота (7-АЦК), которая имеет сходство с 6-аминопенициллановой кислотой (6-АПК), осно­вой пенициллинов.

Однако различия в химической структуре этих двух групп анти­биотиков делают цефалоспорины устойчивыми к пенициллиназам, продуцируемым стафилококками и другими грамположительными бактериями, но могут разрушаться пенициллиназами грамотрицательных бактерий и цефалоспориназами.

К цефалоспоринам относятся антибиотические препараты несколь­ких поколений, отличающиеся друг от друга по антибактериальному спектру и фармакологическим свойствам. К цефалоспоринам 1-го поколения относятся цефалоридин (цепорин), цефалоксин, цефалотин и др.; 2-го поколения— цефамандол, цефуроксим, цефазолин (кефзол), мандол и др. 3-го поколения — кефлор, цефтазидим (фортум), клафоран, кетоцеф и др.

Антибактериальный спектр цефалоспоринов 1-го поколения в целом достаточно широк. Они характеризуются высокой активностью против грамположительных бактерий и вы­борочно в отношении грамотрицательных. По действию на стафи­лококки и эшерихии они превосходят пенициллины. В терапевти­ческих концентрациях преобладает бактерицидное действие препа­ратов. Однако так же, как и к пенициллинам, к ним устойчивы псевдомонады, протеи, многие энтерококки, бактероиды.

Цефалоспорины 2-го поколения отличаются более высокой устой­чивостью к бета-лактамазам грамотрицательных бактерий и более широким антибактериальным спектром, хотя к ним также устойчивы вышеперечисленные микроорганизмы.

Цефалоспорины 3-го поколения относятся к антибиотикам широ­кого спектра действия с высокой стабильностью к большинству мик­робных β-лактамаз. Они отличаются от антибиотиков предыдущих поколений значительно большей активностью в отношении синегнойных бактерий, бактероидов и др. Высокоактивны в отношении бакте­рий, резистентных к пенициллинам и цефалоспоринам 1-го и 2-го поколений, а также к аминогликозидным антибиотикам, левомицетину, сульфаниламидам. Инфекции, вызванные псевдомонадами, хорошо поддаются лечению цефтазидимом.

Механизм антибактериального дейст­вия цефалоспоринов такой же, как и у пенициллинов.

Цефалоспорины блокируют синтез клеточной стенки.

Развитие резистентности бактерий ко многим цефалоспоринам встречается редко и происходит медленно. Отмечается перекрестная устойчивость бактерий к цефалоспоринам 1-го и 2-го поколений.

Новые β-лактамы:

1) Карбопенемы (тиенамицины). Характеризуются широким антибактериальным спектром, Line 24включающим грамположительные и грамотрицательные бактерии и анаэробы. Однако они быстро инактивируются ферментами почек.

  1. Line 23Монобактамы. Они имеют узкий антибактериальный спектр и не действуют на грамотрицательные бактерии и анаэробы.

  2. Производные клавулановой кислоты. Эти препараты являют­ся ингибиторами бета-лактамаз. Они имеют бета-лактамное кольцо, и необратимо связываясь с бета-лактамазами, блокируют их. Применя­ются в виде комбинированных препаратов с другими антибиотиками, например, с амоксициллином — амоксиклав, с тикарциллином — тиментин, действующими на некоторые грамотрицательные и грам­положительные бактерии.

Циклосерин. Антибиотик, образующийся в процессе жизнеде­ятельности некоторых актиномицетов. Он получен синтетическим путем.

Антибактериальный спектр. Циклосерин оказывает бактериостатическое действие на некоторые грамположительные и грамотрицательные бактерии. Важной особенностью данного анти­биотика является его способность задерживать размножение микобактерий туберкулеза, хотя она выражена слабее, чем у стрептомицина, фтивазида и тубазида. Циклосерин действует на устойчивые к пере­численным препаратам микобактерии туберкулеза. Его относят к ан­тибиотикам «резерва».

Механизм антибактериального дейст­вия циклосерина объясняется изменениями в синтезе пептидогликана клеточной стенки.

  1. Антибиотики, нарушающие функции цитоплазматической мембраны микроорганизмов.

К данной группе относятся полимиксины, полиеновые ан­тибиотики (нистатин, леворин, амфотерицин В).

Полимиксины. Группа родственных антибиотиков, продуцируе­мых спорообразующими почвенными бактериями Bacillus polymyxa и др. По химическому строению представляют собой сложные соеди­нения, включающие остатки полипептидов. К данной группе отно­сятся полимиксин М, полимиксин В, которые отличаются друг от друга главным образом фармакологическими свойствами.

Антибактериальный спектр этих антибиотиков включает преимущественно грамотрицательные бактерии (кишечная и синегнойная палочки, шигеллы, протей, клебсиеллы). Резистентны к полимиксинам грамположительные бактерии, микоплазмы, грибы. На чувствительные бактерии полимиксины оказывают бактерицидное действие, резистентность к ним развивается медленно.

Полиеновые антибиотики. К данной группе относятся главным образом противогрибковые антибиотики: нистатин, леворин, амфоте­рицин В, продуцируемые антиномицетами. Близки к ним гризеофульвин, толнафтат, клотримазол, миконазол, кетоконазол и др. К гризеофульвину и толнафтату чувствительны дерматофиты, к трем послед­ним препаратам — большинство грибов, за исключением аспергиллов.

Антимикробный спектр нистатина и леворина включает дрожжеподобные грибы рода Candida и грибы рода Aspergillus. К амфотерицину В чувствительны возбудители глубоких микозов.

Резистентность чувствительных микроорганизмов к данным ан­тибиотикам развивается редко.

Механизм антимикробного действия полиеновых антибиотиков связан с адсорбцией на цитоплазматической мембране грибов, что приводит к повышению проницаемости мембраны, в резуль­тате чего клетка обезвоживается, теряет некоторые микроэлементы (калий) и в конечном итоге погибает.

Чувствительность микроорганизмов к нистатину, леворину и другим полиеновым антибиотикам объясняется наличием стеролов в составе их мембраны, а устойчивость бактерий, спирохет, риккетсий и других микроорганизмов — отсутствием данного компо­нента. Возникновение резистентности к этим антибиотикам у дрожжеподобных грибов наблюдается редко.

  1. Антибиотики, ингибирующие синтез белка на рибосомах бактериальных

клеток.

Это самая многочисленная группа антибиотиков, включаю­щая разнообразные по своему химическому составу природные со­единения, преимущественно продуцируемые антиномицетами. К ним относятся аминогликозидные антибиотики, группа тетрациклина, левомицетин, макролиды и др.

Аминогликозидные антибиотики.

Первый антибиотик этой группы стрептомицин был выделен 3.Я. Ваксманом еще в 1943 г. вслед за пенициллином. В настоящее время в группу включены стрептомицина сульфат, стрептосульфамицина сульфат, дегидрострептомицина сульфат и др.

Стрептомицин является сложным органическим основанием.

Антибактериальный спектр стрептомицина и его производных включает большое число видов грамотрицательных бактерий: кишечная палочка, шигеллы, клебсиеллы, бруцеллы, бактерии туляремии, чумы, вибрион холеры. К ним чувствительны гно­еродные кокки, в том числе устойчивые к пенициллину. Основной особенностью стрептомицинов является их способность подавлять размножение микобактерий туберкулеза.

Механизм антибактериального дейст­вия стрептомицина заключается в способности блокировать субъе­диницу рибосомы 30S, а также нарушать считывание генетического кода.

Недостатком стрептомицина является быстрое возникновение к нему резистентных бактерий.

К аминогликозидам 1-го поколения наряду со стрептомицином относятся мономицин, неомицин, канамицин; аминогликозиды 2-го поколения — гентамицин, тобрамицин, сизомицин, амикацин (полу­синтетическое производное канамицина).

Перечисленные антибиотики отличаются друг от друга по хими­ческой структуре и фармакологическим свойствам.

Антибактериальный спектр этих антибиотиков в основном сходен со стрептомициновым. Однако чувствительность к каждому из них варьирует в зависимости от вида и штамма пере­численных бактерий. Например, к мономицину более чувствительны стафилококки, шигеллы, клебсиеллы, малочувствительны стрептокок­ки, чувствительность протеев широко варьирует. Кроме того, моно­мицин достаточно активен в отношении ряда простейших (лейшмании, токсоплазма, дизентерийная амеба). Канамицин отличается вы­сокой активностью по отношению к микобактериям туберкулеза, в том числе резистентных к стрептомицину и изониазиду. Он также действует на бактерии, устойчивые ко многим антибиотикам, за ис­ключением неомицина, гентамицина (перекрестная устойчивость). Ген­тамицин более активен, чем другие аминогликозиды, в отношении протеев, тобрамицин — синегнойной палочки. Сизомицин по анти­бактериальному спектру близок к гентамицину, но отличается от него более высокой активностью. Амикацин является одним из наиболее активных аминогликозидов.

Резистентность бактерий к аминогликозидным антибиотикам в отличие от стрептомицина формируется постепенно. Кроме того, бак­терии, резистентные к одному из препаратов группы стрептомицина, приобретают устойчивость и к другим препаратам этой группы, но сохраняют чувствительность к другим аминогликозидным антибио­тикам. Вместе с тем бактерии обычно приобретают перекрестную устойчивость к неомицину, мономицину, канамицину или к гентами­цину, тобрамицину, сизомицину. Однако многие из них сохраняют при этом чувствительность к амикацину.

Наиболее чувствительными к ферментам, инактивирующим аминогликозидные антибиотики, являются стрептомицин, неомицин и канамицин, наименее чувствительными — гентамицин, тобрамицин и амикацин.

Группа тетрациклинов

К группе тетрациклинов относятся родственные по химическому строению, антимикробному спектру и механизму действия природ­ные антибиотики и их полусинтетические производные: тетрациклин, тетрациклина гидрохлорид, окситетрациклина гидрохлорид, морфоциклин, метациклина гидрохлорид (синоним рондомицин), доксициклина гидрохлорид (синоним вибромицин) и др.

Line 27Тетрациклины являются антибиотиками широкого спектра дей­ствия. Они оказывают на чувствительные микроорганизмы бактериостатическое действие. Их антимикробный спектр включает грамположительные и грамотрицательные бактерии, спи­рохеты, риккетсии, хламидии, микоплазмы. Тетрациклины неэффек­тивны в отношении микобактерий туберкулеза, протея, синегнойной палочки, грибов. Вместе с тем отмечается более высокая активность морфоциклина и рондомицина в отношении микоплазмы пневмонии и вибриомицина в отношении гонококков.

Line 28Хотя резистентность чувствительных к тетрациклинам бактерий нарастает постепенно, многие виды приобрели к ним довольно высо­кую устойчивость. Вместе с тем отмечается перекрестная резистент­ность бактерий к тетрациклину и его производным.

Механизм антибактериального действия тетрациклинов заключается в подавлении синтеза белка на рибосомах бактериальных клеток.

Левомицетин (хлорамфеникол)

Левомицетин представляет собой синтетический антибиотик, иден­тичный природному хлорамфениколу, который образуется некоторы­ми видами актиномицетов.

Антибактериальный спектр левомицетина включает грамположительные и грамотрицательные бактерии, спирохеты, рик­кетсии, хламидии. К нему высокочувствительны многие штаммы пиогенных кокков, особенно пневмококки, а также возбудители диф­терии и сибирской язвы.

Резистентность бактерий к левомицетину развивается относитель­но медленно. Левомицетин действует на штаммы бактерий, устойчи­вые к пенициллину, стрептомицину, сульфаниламидам. В обычных дозах вызывает бактериостатический эффект. Практически не влияет на микобактерии туберкулеза, синегнойную палочку, анаэробные бак­терии и простейшие.

Механизм антибактериального действия левомицетина состоит в подавлении син­теза белка в бактериальной клетке.

Линкомицин

Антибиотик, продуцируемый некоторыми видами актиномицетов.

Антибактериальный спектр. Линкомицин обладает бактериостатическим действием. Наиболее чувствительны к нему патогенные кокки, а также бактерии дифтерии, сибирской язвы, неко­торые возбудители анаэробной раневой инфекции. На грамотрицатель­ные бактерии не действует. Активен в отношении бактерий, резис­тентных к пенициллину и другим антибиотикам. Резистентность к линкомицину развивается постепенно.

Механизм антибактериального действия связан с подавлением синтеза белка при взаимодействии с 50 S субъ­единицей рибосомы.

Макролиды

К макролидам относятся эритромицин, его фосфорнокислая соль (эритромицина фосфат) и олеандомицин. Эти антибиотики продуци­руются определенными видами актиномицетов и имеют сходное хи­мическое строение, характеризующееся наличием в их молекуле макроциклического лактонного кольца.

Антибактериальный спектр макролидов включает главным образом грамположительные бактерии (группа гноеродных кокков, клостридии), некоторые грамотрицательные бактерии (бруцеллы, гемофильная палочка). Кроме того, эритроми­цин— один из немногих антибиотиков, который оказался эффек­тивным в отношении кампилобактерий и легионелл. Он также дей­ствует на микоплазму пневмонии. Оба антибиотика характеризуют­ся бактериостатическим действием и быстрым образованием резистентных форм бактерий. При комбинированном применении эритромицина со стрептомицином или тетрациклинами наблюдает­ся усиление антибактериального действия. Применяется также ком­бинированный препарат, состоящий из олеандомицина и тетрацик­лина, — олететрин. Он обладает более широким антибактериаль­ным спектром. Резистентность бактерий к олететрину развивается медленнее, чем к его отдельным компонентам.

Механизм антибактериального действия макролидов состоит в их способности взаимодействовать с субъединицей рибосомы 50 S, что приводит к нарушению синтеза белка.