Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Geodinam / geokniga-аплонов-геодинамика-2001.pdf
Скачиваний:
509
Добавлен:
23.02.2016
Размер:
4.65 Mб
Скачать

далеком прошлом нашей Солнечной системы кометами из других планетных систем. Это обстоятельство, в частности, подтверждает гипотезу о занесении жизни на Землю из космоса, к настоящему времени сменяющую еще недавно популярную гипотезу о самозарождении жизни на самой Земле.

Некоторые кометы, напротив, за счет гравитационных взаимодействий с планетами-гигантами переводятся на сильно вытянутые эллиптические орбиты, двигаясь по которым они регулярно посещают центральную часть Солнечной системы. При приближении комет к Солнцу за счет испарения газов с поверхности у них образуются так называемые “хвосты”, благодаря которым кометы и становятся заметны.

Завершая рассмотрение современной Солнечной системы, вернемся еще раз к проблеме ее происхождения. Мы видели, что в образовании Солнечной системы просматриваются черты, общие для всех других “солнечных систем”, и те особенности, которые появились случайно и специфичны только для нашей Солнечной системы. Конечно, разделить общие и индивидуальные особенности было бы гораздо проще, если бы можно было сравнить нашу Солнечную систему с другими подобными. Но на сегодняшний день еще не удалось обнаружить в космосе объекты земных размеров, вращающиеся вокруг близких звезд, хотя заявки на открытие таких объектов уже появляются. Таким образом, пока неизвестно, насколько распространены во Вселенной “солнечные системы” и, следовательно, насколько закономерно или случайно их появление. Можно ли считать появление “солнечных систем” закономерным следствием более или менее обычного процесса развития или же для этого требовалось какое-то редкое стечение обстоятельств? Поскольку большинство ученых не любят привлекать “особые обстоятельства” без крайней необходимости (в этом состоит известный принцип “бритвы Оккама”), чаще допускается первое.

1.1.4. Аккреция Земли

Мы подошли к главному вопросу, от решения которого, в сущности, зависит любая эволюционная модель Земли: какой была наша планета 4,6 млрд лет назад – в начале своей геологической истории или в “точке геологического нуля”? Ясно, что ответить на него путем изучения пород современной Земли нельзя –

21

во-первых, ее глубокие недра недоступны для наблюдения, и, вовторых, Земля прошла длительную эволюцию, практически стершую следы ее образования и ранней геологической истории. Однозначный ответ на поставленный вопрос не дадут и космические тела, от крупных планет до космической пыли, поскольку у каждого из них был свой, до известной степени индивидуальный путь развития, приведший к различному современному состоянию.

Обычно ученые, приступая к восстановлению структуры и состава первичной Земли, черпают данные из разных источников, а затем сопоставляют их, добиваясь на выходе непротиворечивой модели. Важнейшими источниками сведений при этом являются:

(1) метеориты и планеты земной группы, (2) включения (ксенолиты) глубинных пород Земли, (3) геофизические данные о современном состоянии глубоких недр Земли и (4) результаты моделирования геологической эволюции Земли, при котором в качестве начальных параметров используются сведения из источников (1) (2), а состоятельность моделей проверяется сведениями из источника (3).

В данном разделе обсуждается наиболее вероятная в настоящее время модель первичной Земли, созданная на базе всех перечисленных выше источников данных.

Как уже говорилось, важнейшую информацию для восстановления картины начального состояния Земли несут метеориты, потому что они, как полагают, являются “окаменевшими остатками” ранней Солнечной системы и тем самым дают нам сведения об аккреции планет, следы которой впоследствии были стерты планетной эволюцией. Родительскими телами подавляющего большинства метеоритов являются астероиды, пояс которых расположен между орбитами Марса и Юпитера (см. рис. 1.1.3.1, вклейка). Астероиды постоянно сталкиваются между собой, и от них разлетаются осколки – метеориты, часть которых затем падает на поверхности крупных планет Солнечной системы, в том числе и Земли.

Среди метеоритов наибольший интерес представляют

углистые (углеродистые) хондриты, отличающиеся от других типов метеоритов значительным содержанием связанной воды, углеродныхсоединенийи серы, но малым содержанием свободных металлов. Углистые хондриты испытали самые слабые по

22

сравнению с другими метеоритами изменения, поскольку, как показывают лабораторные эксперименты, они потеряли бы свои летучие компоненты, будучи нагретыми всего лишь до 180°С. Значит, углистые хондриты наиболее близки по составу к первоначальной Солнечной туманности, из которой образовалась Солнечная система и произошла аккреция ее планет, в том числе Земли.

Путем многократных сопоставлений данных по составу углистых хондритов, с одной стороны, составу земной коры и мантии – с другой, и спектральных характеристик солнечной атмосферы – с третьей, геохимики пришли к выводу, что валовый состав Земли (и, по-видимому, других планет земной группы, за исключением, может быть, Меркурия) очень близок к составу углистых хондритов (рис. 1.1.4.1) при условии, что бoльшая часть воды, органических соединений и летучих компонентов была ими потеряна. Таким образом, по валовому составу Земля на 92% состоит всего из пяти элементов (в порядке убывания содержания)

– кислорода, железа, кремния, магния и серы. На все остальные элементы приходится около 8%.

Однако хорошо известно (об этом подробнее пойдет речь в разделе 1.2), что в недрах современной Земли перечисленные элементы распределены неравномерно. Состав любой оболочки Земли, будь то кора, мантия или ядро, резко отличается от валового химического состава нашей планеты. С чем это связано?

Литофильный слой (кора + мантия)

69% массы

Халькофильный слой (внешнее ядро)

29% массы

 

S=8%

Mg=12,5%

 

Si=14,5%

O=32%

Сидерофильный слой

Fe=25%

Другие=8%

(внутреннее ядро)

 

2% массы

 

Рис. 1.1.4.1. Приблизительный химический состав углистого хондрита, отвечающий валовому составу Земли.

Если всем элементам, показанным на рис. 1.1.4.1, дать возможность образовывать соединения, то поведение каждого из

23

них будет определяться электронной конфигурацией и сродством по различным типам связей. Прежде всего образуется литофильный слой, в котором будут преобладать магниевые силикаты (литофильными называются элементы, которые встречаются, как правило, в соединении с кислородом в окислах и силикатах). Именно такой минеральный состав (оливины и пироксены) имеет мантия современной Земли (см. раздел 1.2.4). Железо поведет себя как халькофильный элемент и соединится с имеющейся серой (халькофильные элементы встречаются в основном в сульфидах). Именно такой состав предполагается у внешнего ядра современной Земли (см. раздел 1.2.5). Однако некоторая часть железа соединится с оставшимися кислородом и кремнием и, таким образом, будет вести себя как литофильный элемент. Именно в этом виде железо широко распространено в мантии, а также вместе с другими менее распространенными литофильными элементами (прежде всего Al, Na, Ca и K) – в коре современной Земли (см. разделы 1.2.3 и 1.2.4). Большая распространенность железа обусловливает возможность того, что часть его останется в металлическом виде после использования всего кислорода и серы, т.е. образует сидерофильный слой (сидерофильными называются элементы, встречающиеся обычно в металлическом виде). Именно железо в сплаве с другим, менее распространенным сидерофильным элементом – никелем присутствует во внутреннем ядре современной Земли (см. раздел 1.2.5). Естественно, что какая-то часть летучих элементов (прежде всего H, O и N) будет удалена из первичной Земли за счет ее дегазации и образует уникальные атмосферу и гидросферу, причем создавшийся при этом дефицит кислорода “поможет” железу проявить свои сидерофильные свойства.

Таким образом, в результате появления указанных соединений у любой планеты, имеющей после аккреции начальный хондритовый валовый состав, должны возникнуть три отдельных слоя, в которых будут преобладать последовательно (1) окислы и силикаты Mg и Fe, (2) FeS и (3) металлическое железо. При условии, что на каком-то этапе эволюции планеты температура ее недр станет достаточно высокой, эти слои расположатся в порядке плотности.

Мы приходим, таким образом, к фундаментальному выводу, что разделение современной Земли на резко различные по

24

химическому составу оболочки является результатом ее позднейшей дифференциации, происходившей, хотя и с разной интенсивностью, на протяжении всей геологической истории нашей планеты. После аккреции же из Солнечной туманности, т.е.

в начале своей геологической истории 4,6 млрд лет назад, Земля, как и другие планеты земной группы, была гомогенной, т.е. однородной по составу.

С этой точки зрения очевидно, что степень дифференцированности любой планеты во многом зависит от ее внутренней (геодинамической, тектонической) активности в ходе геологической эволюции. У Земли по сравнению с другими планетами Солнечной системы данная активность была чрезвычайно высокой и, как следствие, ее современное разделение на оболочки очень резкое (см. раздел 1.2).

Однако здесь мы сталкиваемся с вопросом, на который пока не найдено однозначного ответа, а именно – была ли аккреция в масштабе планет однородной (гомогенной) с последующим развитием слоев или же расслоение возникло непосредственно в результате процессов неоднородной (гетерогенной) аккреции?

Выше (см. раздел 1.1.3) уже отмечалось, что внешние планеты Солнечной системы заметно отличаются по своим параметрам от внутренних и образованию планет должна была предшествовать фундаментальная неоднородность Солнечной туманности. Но теперь нас интересует, была ли сама аккреция планет земной группы, в том числе Земли, однородным или неоднородным процессом?

В настоящее время большинство исследователей склоняются к тому, что аккреция Земли и других планет земной группы была гомогенной (однородной) и холодной, с последующим разогревом и расслоением.

Земля и другие планеты, как уже отмечалось (см. раздел 1.1.3), образовались из холодного газо-пылевого облака, температура которого в районе орбиты будущей Земли не превышала 100°С. Процесс аккреции планет длился относительно короткое по геологическим масштабам время – от 107 до 108 лет. Однако как во время, так и сразу же после аккреции существовали достаточно мощные источники тепловой энергии, которые привели к разогреву Земли.

25

О глобальной энергетике Земли подробно будет рассказано в главе 6. Здесь же отметим, что начальный разогрев Земли был связан прежде всего с самим процессом аккреции, поскольку постепенное столкновение планетезималей, образующих планету, неизбежно должно было преобразовывать их кинетическую энергию в тепловую. На ранних стадиях аккреции сила притяжения “зародыша” планеты была небольшой и потому скорость и энергия ударов новых добавляющихся планетезималей была низка; однако с ростом планеты интенсивность ее гравитаци-онного поля увеличивалась, а значит, возрастала и скорость падения планетезималей. Как следствие, разогрев Земли стано-вился все более существенным.

По расчетам (см. главу 6) общая энергия аккреции Земли была настолько огромной, что ее одной хватило бы не только на полное испарение земного вещества, но и на разогрев возникшей плазмы до десятков тысяч градусов. Однако этого не произошло, поскольку энергия аккреции выделялась главным образом в приповерхностных частях формирующейся планеты, а генерируемое в ее верхних слоях тепло интенсивно излучалось в космическое пространство. При этом доля теряемого тепла сущест-венно зависела от скорости аккреции Земли. Таким образом, температура в недрах молодой Земли повышалась от центра к периферии (обратно тому, что наблюдается в современной Земле), но затем вблизи поверхности вновь снижалась за счет быстрого остывания приповерхностных частей

(см. рис. 6.1.1).

В процессе аккреционного разогрева Земля и другие планеты земной группы, очевидно, теряли какую-то часть легких и летучих элементов. Следовательно, из модели холодной аккреции планет земной группы вытекает, что наиболее крупные планеты должны иметь наименьшие концентрации легких и летучих элементов и, как следствие, наибольшую среднюю плотность, поскольку аккреция крупных планет шла интенсивнее, чем мелких, из-за более интенсивного гравитационного поля. На рис. 1.1.4.2 видно, что такая закономерность наблюдается в действительности. Из нее выпадает лишь ближняя к Солнцу планета Меркурий, но его высокая плотность, скорее всего, объясняется аккрецией вне “хондритовой зоны” Солнечной туманности, в области повышенных температур, вследствие чего,

26

как предполагается, Меркурий еще до начала аккреции был обогащен железом и другими тяжелыми и тугоплавкими элементами.

Рис. 1.1.4.2. Зависимость между размерами и плотностями планет земной группы.

Для Земли радиус принят равным 1.

1.25

1.00

0.75

0.50

0.25

3.5

 

Венера Земля

Ìàðñ

Меркурий

4.04.5 5.0 5.5 6.0

Плотность, г/ см3

Вторая причина начального разогрева Земли, после того, как ее аккреция в основном уже завершилась, – это радиоактивный распад. Выше говорилось о том, что уже в первичной Солнечной

туманности присутствовали сравнительно короткоживущие радиоактивные изотопы, такие, как 26Al, 244Pu и 129I (следы их распада

обнаружены в метеоритах). Несомненно, что распад перечисленных короткоживущих изотопов привел к выделению какого-то дополнительного тепла и сыграл свою роль в начальном разогреве Земли. Однако вклад радиогенного тепла в разогрев молодой Земли оценивается очень неопределенно. Дело в том, что процесс аккреции, как уже отмечалось, растянулся на 107 – 108 лет, и неизвестно, какое именно количество изотопов оказалось в Земле к началу аккреции. Например, если содержание изотопа 26Al в рождающейся Земле было таким, как в некоторых метеоритах, то одного его распада хватило бы для того, чтобы вся наша планета расплавилась. Однако задержка начала аккреции Земли всего на 0,7 млн лет (период полураспада 26Al) уменьшила бы выделение радиогенного тепла вдвое.

В последние годы третий, дополнительный источник начального разогрева Земли объясняется захватом Протолуны – гораздо более массивной предшественницы современной Луны. Предполагается, что Протолуна просуществовала на околоземной орбите сравнительно недолго, около 600 млн лет, а затем разрушилась, но за это время Земля получила дополнительное тепло за счет сильнейших приливных взаимодействий со своим массивным

27

спутником. (Подробнее об эволюции двойной планеты Земля – Протолуна также пойдет речь в главе 6.)

Таким образом, разогрев только что образовавшейся и изначально холодной Земли шел под действием трех главных процессов: аккреции, распада короткоживущих радиоактивных изотопов и приливных взаимодействий с Протолуной. По мере нагревания Земли началось ее частичное плавление. Вещества, богатые железом, должны были плавиться первыми, когда силикаты оставались еще твердыми. Поскольку температурный градиент в молодой Земле был отрицательным (приповерхностные оболочки горячее внутренних), расплавленное железо должно было собираться на некоторой глубине под поверхностью молодой Земли в форме линз или каплевидных скоплений. По мере того, как масса таких “капель” увеличивалась, создаваемое их весом давление становилось больше прочности силикатов, и “капли” проходили сквозь силикатную массу к центру планеты. Таким образом, началось расслоение первично гомогенной Земли на две различные по плотности и составу области – железистое ядро (сидерофильно-халькофильный слой) и силикатную мантию (литофильный слой).

Все описанные события имели место вскоре после образования Солнечной системы, вблизи “точки геологического нуля”, около 4,6 млрд лет назад. После этого, уже на стадии геологической эволюции Земли, процессы дифференциации ее недр продолжались. Источником энергии оставалось, как и прежде, запасенное Землей тепло аккреции и приливных взаимодействий с Протолуной, к которому добавилось радиогенное тепло, выделяющееся при распаде долгоживущих изотопов 238U, 235U, 232Th и 40K.

Наиболее важно то, что уже на ранних этапах геологической истории в суммарный энергетический баланс Земли включился новый и чрезвычайно мощный источник энергии, связанный с конвективным перемешиванием ее недр (см. раздел 2.5 и главу 6), впоследствии ставший и до настоящего времени являющийся главным источником внутренней (эндогенной) активности Земли. Прообразом будущей конвекции было описанное выше стекание железных “капель” к центру Земли. Много позже, около 2,7 – 2,5 млрд лет назад, процесс значительно усилился: произошло лавинообразное стекание железистых расплавов из приповерхностных оболочек Земли к ее центру (см. главу 6), в результате

28