
- •Міністерство освіти і науки України
- •Інтегральна оптика
- •1.2. Зміна фази хвилі при її розповсюдженні
- •1.2.1.Фазова затримка
- •1.2.2. Фазова затримка, що вноситься тонким оптичним елементом
- •1.2.3. Фазова затримка, що вноситься тонкою збираючою лінзою
- •1.3. Математичні основи аналогових оптичних процесорів
- •1.3.3.2. Фур’є-образ згортки і кореляції
- •1.4. Розповсюдження оптичної хвилі
- •1.4.1. Розповсюдження оптичної хвилі у вільному просторі
- •1.4.2. Реалізація фур’є-перетворення в оптиці і в інтегральній оптиці зокрема
- •2. Теорія оптичного хвилеводу
- •2.2. Оптико-геометричний підхід до фізики плоского хвилеводу
- •2.2.1. Дисперсійне рівняння хвилеводу
- •2.2.3. Ефективна товщина хвилеводу
- •2.2.4. Довжина оптичного “зигзагу”
- •2.2.5. Кількість мод, які можуть розповсюджуватися у хвилеводі
- •2.2.6. Різниця між коефіцієнтами заломлення хвилеводу та оточуючих шарів.
- •2.3. Реальний хвилевід
- •2.4. Дисперсія у хвилевідній системі
- •2.4.1. Хроматична дисперсія
- •2.4.2. Модова дисперсія
- •2.5. Розповсюдження хвиль у градієнтному хвилеводі
- •3. Базові елементи інтегральної оптики. Пасивні елементи
- •3.1. Елементи введення-виведення (інтегрально-оптичні елементи зв’язку)
- •3.1.1. Призмовий елемент введення-виведення
- •3.1.2. Решітчастий елемент введення-виведення
- •3.2. Планарні оптичні елементи
- •3.2.1. Лінзи Люнеберга
- •3.2.2. Геодезична лінза
- •3.2.3. Дифракційні лінзи
- •4. Активні елементи інтегральної оптики
- •4.1. Електрооптичні пристрої
- •4.1.1. Модулятори-перемикачі на основі ефекту тунельної перекачуванни світла, або модулятори-перемикачі на зв’язаних хвилеводах
- •4.1.2. Модулятори-перемикачі інтерференційного типу
- •4.1.3. Електрооптичні модулятори на основі ефекту Брега
- •4.1.4. Електроабсорбційні модулятори
- •4.2. Акустооптичні модулятори
- •4.3. Магнітно-оптичні модулятори
- •4.4. Генерація світла в системах інтегральної оптики
- •5. Інтегральна оптика в приладах і пристроях
- •5.1. Датчики фізичних величин та пристрої на основі решітчастих елементів введення-виведення
- •5.1.1. Кутовимірювальні датчики
- •5.1.2. Хвилевідні фільтри на основі явищ аномального відбивання пропускання
- •5.2. Інтегрально-оптичні пристрої обробки інформаційних сигналів. Принципи оптичної хвилевідної обробки сигналів. Методи побудови оіс для інформаційної техніки
- •5.2.1. Типи та основні класи оіс для обробки інформації
- •5.2.2. Оіс для обробки сигналів
- •5.2.2.1. Інтегрально-оптичні спектроаналізатори високочастотних сигналів
- •5.2.2.2. Інтегрально-оптичні корелят ори
- •5.3. Аналого-цифрові перетворювачі. Чотири розрядний ацп
- •5.4. ОІс для обчислювальної техніки
- •5.4.2. Приклади побудови логічних елементів
- •6. Нейронні і нейроподібні мережі та їх оптична реалізація.
- •6.1. Структура нейронних мереж.
- •6.2.Алгоритм роботи нейронної мережі. Алгоритм Хопфілда
- •6.3. Перспективи розвитку оптичних нейронних мереж.
- •6.4. Реалізація оптичних нейронних мереж
- •6.4.1 Оптична нейронна мережа з процесорним ядром у вигляді безопорнрої голограми.
- •6.4.2. Оптична нейронна мережа з процесорним ядром у вигляді узгодженого фільтра.
- •6.4.3. Недоліки і переваги обох систем.
- •7. Оптичний зв’язок відкритими каналами
- •7.1. Розповсюдження світла через атмосферу
- •7.1.1. Молекулярне поглинання
- •7.1.2. Поглинання та розсіювання рідкими або твердими частинками
- •7.1.3. Атмосферна турбулентність
- •7.2. Макрохвилеводи
- •Волоконно-оптичні лінії зв’язку. Пасивні та активні елементи восп
- •1. Фізичні характеристики оптичного волокна
- •1.1. Основні елементи оптичного волокна
- •1.2. Типи і характеристики оптичного волокна
- •1.2.1. Профілі показника заломлення
- •1.3. Властивості оптичних волокон як передаючого середовища
- •1.3.1. Поглинання в оптичних волокнах
- •1.3.2. Дисперсія
- •1.4. Геометричні параметри волокна
- •1.4.1. Відносна різниця показників заломлення ядра та оболонки
- •1.4.2. Числова апертура волокна
- •1.4.3. Нормована частота
- •1.4.4. Хвиля відсічки
- •1.4.5. Наближена оцінка міжмодової дисперсії багатомодового волокна
- •1.5. Характеристики оптичних волокон згідно з рекомендаціями itu-t
- •1.6. Нелінійні оптичні явища в одномодових волокнах
- •1.6.1. Фазова самомодуляція (фсм) та перехресна фазова модуляція (фкм)
- •1.6.2. Вимушене комбінаційне (Раманське) розсіяння вкр (srs) і розсіяння Мандельштама-Бриллюена врмб (sbs)
- •1.7. Одномодові волокна нових типів виробництва компаній lucent technologies cornigs.
- •2. Оптичні кабелі
- •2.1. Особливості конструкції оптичних кабелів
- •2.2. Монтаж оптичних кабелів
- •2.2.1. Аналіз втрат, які виникають у процесі монтажу оптичних кабелів зв’язку
- •2.2.2. Методи з’єднання оптичних волокон
- •2.2.3. Зварні з’єднання
- •2.2.4. Клейові з’єднання
- •2.2.4. Механічні з’єднувачі
- •2.2.5. Рознімні з’єднання
- •3. Пасивні оптичні елементи волз
- •3.1. Волоконно-оптичні відгалужувачі і розгалужувачі
- •3.1.1. Зварні відгалужувачі
- •3.1.2. Відгалужувачі із градієнтною циліндричною лінзою
- •3.1.3. Спектрально-селективні розгалужувачі (мультиплексори/демультиплексори)
- •3.2. Волоконно-оптичні перемикачі
- •3.2.1. Електромеханічні перемикачі
- •3.2.2. Термооптичні перемикачі
- •3.2.3. Електрооптичні перемикачі
- •3.2.4. Оптичні ізолятори
- •4. Активні елементи волз
- •4.1. Джерела випромінювання
- •4.1.1. Світлодіоди
- •4.1.2. Лазерні діоди (лд)
- •4.1.3. Фабрі-Перо-лазер
- •4.1.4. Лазери з розподіленим оберненим зв’язком (роз-лазери) і розподіленим брегівським відбиванням (рбв-лазери)
- •4.1.5. Лазерні діоди із зовнішнім резонатором
- •4.1.6. Найважливіші характеристики джерел випромінювання для волз
- •5.2. Складові елементи передавального оптоелектронного модуля
- •5. Приймальні оптоелектронні модулі. Ретранслятори, підсилювачі
- •5.1. Приймальні оптоелектронні модулі (пром)
- •5.1.1. Функціональний склад пром
- •5.1.3. Лавинні фотодіоди
- •5.1.4. Технічні характеристики фотоприймачів
- •5.2. Електронні елементи пром
- •5.2.5. Таймер
- •6. Повторювачі та оптичні підсилювачі
- •6.1. Типи ретрансляторів
- •6.1.1. Повторювачі
- •6.1.2. Оптичні підсилювачі
- •6.1.3. Підсилювачі Фабрі-Перо
- •6.1.4. Підсилювачі на волокні, які використовують бріллюенівське розсіювання
- •6.1.5. Підсилювачі на волокні, які використовують раманівське розсіювання
- •6.1.6. Напівпровідникові лазерні підсилювачі
- •6.2. Підсилювачі на домішковому волокні. Волоконно-оптичні підсилювачі
- •6.3. Інші характеристики ербієвих волоконних підсилювачів
- •6.4. Схеми накачування ербієвого волокна воп
- •Список літератури до частини іі
- •Волоконно-оптичні
- •1.2. Структура систем зв’язку
- •1.3. Способи передавання сигналів
- •1.3.1. Послідовне і паралельне передавання сигналів
- •1.3.2. Синхронне та асинхронне передавання сигналів
- •1.3.3. Поелементне передавання сигналів
- •1.3.4. Передавання сигналів кодовими комбінаціями
- •1.4. Особливості каналів зв’язку
- •1.4.1. Особливості аналогових каналів зв’язку
- •1.4.2. Особливості цифрових каналів зв’язку
- •1.5. Параметри цифрової системи зв’язку
- •2. Волоконно-оптичні системи зв’язку
- •2.1. Структура волоконно-оптичної лінії зв’язку
- •2.2. Переваги використання оптичних волокон у системах зв’язку
- •3. Проектування (планування) волоконно- оптичної лінії зв’язку
- •3.1. Аналіз смуги пропускання волз
- •3.2. Втрати і обмеження в лініях зв’язку
- •4. Системи передавання інформації
- •4.1. Системи зв’язку плезіохронної цифрової цифрової ієрархії
- •4.1.1. Системи зв’язку для ліній зв’язку первинної цифрової ієрархії е1
- •4.1.2. Системи зв’язку для ліній зв’язку вторинної цифрової ієрархії е2
- •4.1.3. Системи зв’язку для ліній зв’язку третинної цифрової ієрархії е3
- •4.1.4. Системи зв’язку цифрової плезіохронної ієрархії е4
- •4.2. Системи і обладнання синхронної цифрової ієрархії
- •4.2.1. Синхронна цифрова ієрархія та мережі
- •4.2.2. Апаратура сці (sdh)
- •4.2.3. Апаратура sdh компанії Lucent technologies
- •4.2.4. Апаратура сці виробництва фірми siemens
- •5. Методи ущільнення інформаційних потоків
- •5.2. Метод часового ущільнення
- •5.3. Модове ущільнення
- •5.4. Ущільнення за поляризацією
- •5.6. Оптичне часове ущільнення (otdm)
- •5.7. Методи ущільнення каналів за полярністю
- •Список літератури до частини ііі:
- •8. Мохунь і.І, Полянський п.В. Інтегральна оптика в інформаційній техніці. Конспект лекцій. – Чернівці, Рута, 2002, – 79 с.
- •Задачі та практичні питання до курсів
- •І. Інтегральна оптика в інформаційній техніці
- •Іі. Волоконно-оптичні системи передавання.
- •Додаток 1
- •2. Зберігання форми переданого сигналу, можливість відновлення його початкової форми.
- •Перевід величини втрат з відсотків до дБ та навпаки
Додаток 1
Розрахунок регенераційної ділянки ВОЛЗ
При розрахунку регенераційної ділянки ВОЛЗ до уваги беруться два фактори:
Величина енергетичних втрат при передаванні сигналу (бюджет потужності оптичної лінії).
Зберігання форми переданого сигналу, можливість відновлення його початкової форми.
1. Втрати сигналу у ВОЛЗ зумовлені такими чинниками:
1.1. Затухання сигналу в лінії.
1.2. Втрати потужності випромінювання при його введенні від джерела в світловід та виведенні з світловода до приймача.
1.3. Втрати потужності на з’єднаннях:
Роз’ємних (розніми, коннектори).
Нероз’ємних (зварювання ділянок волокна, з’єднання волокна за допомогою муфт і т.ін.).
1.4. Запас потужності на модуляцію сигналу для забезпечення відповідного відношення сигнал-шум.
1.5. Резервний запас потужності.
1.1. Затухання сигналу в лінії.
Затухання
сигналу в лінії визначається довжиною
лінії
та коефіцієнтом затухання
на довжині хвилі передавання сигналу:
(1)
1.2.
Втрати потужності на введення-виведення
.
Втрати потужності складають величину не більше 3 Дб.
1.3. Втрати потужності на з’єднаннях:
- Втрати на рознімах складають величину:
(2)
де
змінюється від 0.1-0.2 Дб (юстуємі розніми)
до 2-3 Дб (звичайні розніми).
- Втрати при з’єднанні ділянок волокна складають величину:
(3)
де
змінюється від <0.1-0.2 Дб (зварювання)
до 0.1-0.2 Дб (муфти),
– будівельна довжина кабелю (~6 км при
прокладанні кабелю по поверхні землі,
~50 км при підводному прокладанні кабелю).
1.4.
Запас потужності на модуляцію сигналу
необхідний
для забезпечення відповідної величини
коефіцієнта помилок (БЕР) на рівні ()
і складає значення 18 Дб.
1.5.
Резервний
запас потужності
,
необхідний для забезпечення стійкої
роботи ВОЛЗ при зниженні характеристик
елементів системи передавання (старіння
випромінювачив, приймачів і т.ін.) складає
величину від 3 до 6 Дб.
Таким чином загальні втрати у ВОЛЗ описуються співвідношенням:
(4)
де всі втрати у співвідношенні беруться із знаком +. Запас потужності системи:
(5)
Тоді якщо надлишок потужності:
(6)
більше
0 то за енергетичними характеристиками
працездатність лінії довжиною
забезпечена.
2. Зберігання форми переданого сигналу, можливість відновлення його початкової форми.
Зберігання
форми переданого сигналу (можливість
відновлення його початкової форми)
забезпечується, якщо для довжини лінії
можна нехтувати впливом дисперсії в
хвилевідній системі. Величина дисперсії
(нехтуючи впливом поляризаційної
дисперсії) визначається формулою:
(7)
де
– хроматична та модова дисперсії впс
відповідно,
,
– коефіцієнти модової та хроматичної
дисперсії,
– емпіричний коефіцієнт, величина якого
у більшості випадків дорівнює 0.7,
– напівширина спектрального діапазону
випромінювача внм.
Впливом дисперсії можна нехтувати якщо
виконується співвідношення:
(8)
де
– тактова частота сигналу.
Таким
чином на основі співвідношень (6) та (8)
можна розрахувати довжини регенераційних
ділянок
та
виходячи з міркувань забезпечення
енергетики системи та збереження
інформаційного сигналу. Тоді істинна
довжина регенераційної ділянки
вибирається меншою з величин
та
.
Додаток 2