
- •Міністерство освіти і науки України
- •Інтегральна оптика
- •1.2. Зміна фази хвилі при її розповсюдженні
- •1.2.1.Фазова затримка
- •1.2.2. Фазова затримка, що вноситься тонким оптичним елементом
- •1.2.3. Фазова затримка, що вноситься тонкою збираючою лінзою
- •1.3. Математичні основи аналогових оптичних процесорів
- •1.3.3.2. Фур’є-образ згортки і кореляції
- •1.4. Розповсюдження оптичної хвилі
- •1.4.1. Розповсюдження оптичної хвилі у вільному просторі
- •1.4.2. Реалізація фур’є-перетворення в оптиці і в інтегральній оптиці зокрема
- •2. Теорія оптичного хвилеводу
- •2.2. Оптико-геометричний підхід до фізики плоского хвилеводу
- •2.2.1. Дисперсійне рівняння хвилеводу
- •2.2.3. Ефективна товщина хвилеводу
- •2.2.4. Довжина оптичного “зигзагу”
- •2.2.5. Кількість мод, які можуть розповсюджуватися у хвилеводі
- •2.2.6. Різниця між коефіцієнтами заломлення хвилеводу та оточуючих шарів.
- •2.3. Реальний хвилевід
- •2.4. Дисперсія у хвилевідній системі
- •2.4.1. Хроматична дисперсія
- •2.4.2. Модова дисперсія
- •2.5. Розповсюдження хвиль у градієнтному хвилеводі
- •3. Базові елементи інтегральної оптики. Пасивні елементи
- •3.1. Елементи введення-виведення (інтегрально-оптичні елементи зв’язку)
- •3.1.1. Призмовий елемент введення-виведення
- •3.1.2. Решітчастий елемент введення-виведення
- •3.2. Планарні оптичні елементи
- •3.2.1. Лінзи Люнеберга
- •3.2.2. Геодезична лінза
- •3.2.3. Дифракційні лінзи
- •4. Активні елементи інтегральної оптики
- •4.1. Електрооптичні пристрої
- •4.1.1. Модулятори-перемикачі на основі ефекту тунельної перекачуванни світла, або модулятори-перемикачі на зв’язаних хвилеводах
- •4.1.2. Модулятори-перемикачі інтерференційного типу
- •4.1.3. Електрооптичні модулятори на основі ефекту Брега
- •4.1.4. Електроабсорбційні модулятори
- •4.2. Акустооптичні модулятори
- •4.3. Магнітно-оптичні модулятори
- •4.4. Генерація світла в системах інтегральної оптики
- •5. Інтегральна оптика в приладах і пристроях
- •5.1. Датчики фізичних величин та пристрої на основі решітчастих елементів введення-виведення
- •5.1.1. Кутовимірювальні датчики
- •5.1.2. Хвилевідні фільтри на основі явищ аномального відбивання пропускання
- •5.2. Інтегрально-оптичні пристрої обробки інформаційних сигналів. Принципи оптичної хвилевідної обробки сигналів. Методи побудови оіс для інформаційної техніки
- •5.2.1. Типи та основні класи оіс для обробки інформації
- •5.2.2. Оіс для обробки сигналів
- •5.2.2.1. Інтегрально-оптичні спектроаналізатори високочастотних сигналів
- •5.2.2.2. Інтегрально-оптичні корелят ори
- •5.3. Аналого-цифрові перетворювачі. Чотири розрядний ацп
- •5.4. ОІс для обчислювальної техніки
- •5.4.2. Приклади побудови логічних елементів
- •6. Нейронні і нейроподібні мережі та їх оптична реалізація.
- •6.1. Структура нейронних мереж.
- •6.2.Алгоритм роботи нейронної мережі. Алгоритм Хопфілда
- •6.3. Перспективи розвитку оптичних нейронних мереж.
- •6.4. Реалізація оптичних нейронних мереж
- •6.4.1 Оптична нейронна мережа з процесорним ядром у вигляді безопорнрої голограми.
- •6.4.2. Оптична нейронна мережа з процесорним ядром у вигляді узгодженого фільтра.
- •6.4.3. Недоліки і переваги обох систем.
- •7. Оптичний зв’язок відкритими каналами
- •7.1. Розповсюдження світла через атмосферу
- •7.1.1. Молекулярне поглинання
- •7.1.2. Поглинання та розсіювання рідкими або твердими частинками
- •7.1.3. Атмосферна турбулентність
- •7.2. Макрохвилеводи
- •Волоконно-оптичні лінії зв’язку. Пасивні та активні елементи восп
- •1. Фізичні характеристики оптичного волокна
- •1.1. Основні елементи оптичного волокна
- •1.2. Типи і характеристики оптичного волокна
- •1.2.1. Профілі показника заломлення
- •1.3. Властивості оптичних волокон як передаючого середовища
- •1.3.1. Поглинання в оптичних волокнах
- •1.3.2. Дисперсія
- •1.4. Геометричні параметри волокна
- •1.4.1. Відносна різниця показників заломлення ядра та оболонки
- •1.4.2. Числова апертура волокна
- •1.4.3. Нормована частота
- •1.4.4. Хвиля відсічки
- •1.4.5. Наближена оцінка міжмодової дисперсії багатомодового волокна
- •1.5. Характеристики оптичних волокон згідно з рекомендаціями itu-t
- •1.6. Нелінійні оптичні явища в одномодових волокнах
- •1.6.1. Фазова самомодуляція (фсм) та перехресна фазова модуляція (фкм)
- •1.6.2. Вимушене комбінаційне (Раманське) розсіяння вкр (srs) і розсіяння Мандельштама-Бриллюена врмб (sbs)
- •1.7. Одномодові волокна нових типів виробництва компаній lucent technologies cornigs.
- •2. Оптичні кабелі
- •2.1. Особливості конструкції оптичних кабелів
- •2.2. Монтаж оптичних кабелів
- •2.2.1. Аналіз втрат, які виникають у процесі монтажу оптичних кабелів зв’язку
- •2.2.2. Методи з’єднання оптичних волокон
- •2.2.3. Зварні з’єднання
- •2.2.4. Клейові з’єднання
- •2.2.4. Механічні з’єднувачі
- •2.2.5. Рознімні з’єднання
- •3. Пасивні оптичні елементи волз
- •3.1. Волоконно-оптичні відгалужувачі і розгалужувачі
- •3.1.1. Зварні відгалужувачі
- •3.1.2. Відгалужувачі із градієнтною циліндричною лінзою
- •3.1.3. Спектрально-селективні розгалужувачі (мультиплексори/демультиплексори)
- •3.2. Волоконно-оптичні перемикачі
- •3.2.1. Електромеханічні перемикачі
- •3.2.2. Термооптичні перемикачі
- •3.2.3. Електрооптичні перемикачі
- •3.2.4. Оптичні ізолятори
- •4. Активні елементи волз
- •4.1. Джерела випромінювання
- •4.1.1. Світлодіоди
- •4.1.2. Лазерні діоди (лд)
- •4.1.3. Фабрі-Перо-лазер
- •4.1.4. Лазери з розподіленим оберненим зв’язком (роз-лазери) і розподіленим брегівським відбиванням (рбв-лазери)
- •4.1.5. Лазерні діоди із зовнішнім резонатором
- •4.1.6. Найважливіші характеристики джерел випромінювання для волз
- •5.2. Складові елементи передавального оптоелектронного модуля
- •5. Приймальні оптоелектронні модулі. Ретранслятори, підсилювачі
- •5.1. Приймальні оптоелектронні модулі (пром)
- •5.1.1. Функціональний склад пром
- •5.1.3. Лавинні фотодіоди
- •5.1.4. Технічні характеристики фотоприймачів
- •5.2. Електронні елементи пром
- •5.2.5. Таймер
- •6. Повторювачі та оптичні підсилювачі
- •6.1. Типи ретрансляторів
- •6.1.1. Повторювачі
- •6.1.2. Оптичні підсилювачі
- •6.1.3. Підсилювачі Фабрі-Перо
- •6.1.4. Підсилювачі на волокні, які використовують бріллюенівське розсіювання
- •6.1.5. Підсилювачі на волокні, які використовують раманівське розсіювання
- •6.1.6. Напівпровідникові лазерні підсилювачі
- •6.2. Підсилювачі на домішковому волокні. Волоконно-оптичні підсилювачі
- •6.3. Інші характеристики ербієвих волоконних підсилювачів
- •6.4. Схеми накачування ербієвого волокна воп
- •Список літератури до частини іі
- •Волоконно-оптичні
- •1.2. Структура систем зв’язку
- •1.3. Способи передавання сигналів
- •1.3.1. Послідовне і паралельне передавання сигналів
- •1.3.2. Синхронне та асинхронне передавання сигналів
- •1.3.3. Поелементне передавання сигналів
- •1.3.4. Передавання сигналів кодовими комбінаціями
- •1.4. Особливості каналів зв’язку
- •1.4.1. Особливості аналогових каналів зв’язку
- •1.4.2. Особливості цифрових каналів зв’язку
- •1.5. Параметри цифрової системи зв’язку
- •2. Волоконно-оптичні системи зв’язку
- •2.1. Структура волоконно-оптичної лінії зв’язку
- •2.2. Переваги використання оптичних волокон у системах зв’язку
- •3. Проектування (планування) волоконно- оптичної лінії зв’язку
- •3.1. Аналіз смуги пропускання волз
- •3.2. Втрати і обмеження в лініях зв’язку
- •4. Системи передавання інформації
- •4.1. Системи зв’язку плезіохронної цифрової цифрової ієрархії
- •4.1.1. Системи зв’язку для ліній зв’язку первинної цифрової ієрархії е1
- •4.1.2. Системи зв’язку для ліній зв’язку вторинної цифрової ієрархії е2
- •4.1.3. Системи зв’язку для ліній зв’язку третинної цифрової ієрархії е3
- •4.1.4. Системи зв’язку цифрової плезіохронної ієрархії е4
- •4.2. Системи і обладнання синхронної цифрової ієрархії
- •4.2.1. Синхронна цифрова ієрархія та мережі
- •4.2.2. Апаратура сці (sdh)
- •4.2.3. Апаратура sdh компанії Lucent technologies
- •4.2.4. Апаратура сці виробництва фірми siemens
- •5. Методи ущільнення інформаційних потоків
- •5.2. Метод часового ущільнення
- •5.3. Модове ущільнення
- •5.4. Ущільнення за поляризацією
- •5.6. Оптичне часове ущільнення (otdm)
- •5.7. Методи ущільнення каналів за полярністю
- •Список літератури до частини ііі:
- •8. Мохунь і.І, Полянський п.В. Інтегральна оптика в інформаційній техніці. Конспект лекцій. – Чернівці, Рута, 2002, – 79 с.
- •Задачі та практичні питання до курсів
- •І. Інтегральна оптика в інформаційній техніці
- •Іі. Волоконно-оптичні системи передавання.
- •Додаток 1
- •2. Зберігання форми переданого сигналу, можливість відновлення його початкової форми.
- •Перевід величини втрат з відсотків до дБ та навпаки
2.2.4. Довжина оптичного “зигзагу”
З
Рис.
2.2.5
і
.
Виходячи с простих геометричних міркувань
(див. Рис. 2.2.5) маємо довжину оптичного
зигзагу:
(2.2.12а)
Або
враховуючи, що
:
.
(2.2.12б)
2.2.5. Кількість мод, які можуть розповсюджуватися у хвилеводі
Розрізняють
випадки симетричного
()
таасиметричного
(
)
хвилеводу.
Для
випадку симетричного хвилеводу ():
. (2.2.13)
Для
дуже асиметричного хвилеводу ():
(2.2.14)
Виникає
питання – чи для будь-якої товщини
хвилеводу можуть розповсюджуватися
хвилевідні моди? З аналізу дисперсійного
рівняння випливає, що при збільшенні
товщини хвилеводу кількість мод зростає.
Інше питання – чи будуть розповсюджуватися
моди в дуже тонкому хвилеводі ()?
Звернемося до рівняння (2.1.12):
,
яке
для малих
трансформується у вираз:
(2.2.15)
а) Симетричний хвилевід.
Для симетричного хвилевода воно має вигляд:
(2.2.16)
Враховуючи (2.1.10) та (2.1.11) маємо
(2.2.17)
З
а
б в
Рис.
2.2.6
(в
тому числі при
буде існувати хоча б одна хвилевідна
мода. Зауважимо, що при
.
Іншими словами (див. Рис. 2.2.6а) кут
розповсюдження моди наближається до
критичного кута
(кута
повного внутрішнього відбивання). Таким
чином, При збільшенні товщини хвилевода
кут розповсюдження нульової моди
збільшується (рис. 2.2.6б). Нарешті при
певній частоті з’являється 1-ша мода
(рис. 2.2.6в) і т.д.
Б) Несиметричний хвилевід.
Для хвилеводу такого типу рівняння (2.2.17) перетвориться до виразу:
(2.2.18)
Природно,
що при зменшенні товщини хвилеводу
чисельник (2.2.18) теж зменшується. Проте
чисельник ніколи не досягає нульової
величини, оскільки
.
Отже існує деяка товщина
несиметричного хвилеводу, така, що для
даної довжини хвилі
в структурах з меншою товщиною хвилевідний
процес не відбувається.
З
того ж виразу випливає, що існує критична
довжина хвилі
,
така, що при збільшенні
і даній товщині структури
хвилеводний процес також не спостерігається.
Зауважимо,
що мінімальної величини чисельник
досягає при
(виконанні умови повного внутрішнього
відбивання на нижній границі):
(2.2.19)
Саме в цьому випадку з’являється 0-ва (головна) мода хвилевода і рівняння (2.2.18) набуває вигляду:
(2.2.20)
Співвідношення
(2.2.20) може бути використане для оцінки
і
.
Зауважимо,
що, чим менше товщина хвилеводу, тим
глибше хвилевідні моди проникають в
середовища покривного шару та підкладенки.
Саме цим фактом можна пояснити неможливість
хвилевідного процесу в дуже тонкому
асиметрічному хвилеводі. Образно (не
строго) кажучи, в такій структурі, при
дуже малих
завдяки несиметричному розподілу поля
вздовж осі
максимум розподілу енергії хвилі
виштовхується з хвилеводу та хвилевідний
процес припиняється.
2.2.6. Різниця між коефіцієнтами заломлення хвилеводу та оточуючих шарів.
Виникає питання – якою повинна бути різниця між коефіцієнтами заломлення, щоб утворився хвилевідний процес?
Зрозуміло, що для симетричного хвилеводу для існування головної, 0-ї моди достатньо будь-якої різниці між коефіцієнтами заломлення. У загальному випадку для симетричного хвилеводу має місце співвідношення:
,
(2.2.21)
Також є справедливими співвідношення:
1.
,
(2.2.22)
2.
,
(2.2.23)
де
– номер хвилевідної моди.
Для
асиметричного хвилеводу (,
)
подібна умова має вигляд:
(2.2.24)
Можна
зробити такі оцінки. Для асиметричного
хвилеводу товщиною близькою до довжини
хвилі та
порядку 2
складає величину близьку до 0.01.