- •Поступати Ейнштейна
- •Перетворення Лоренца
- •Релятивістська форма 2 закону Ньютона
- •3.Розвиток мислення учнів на уроках фізики. Активізація пізнавальної діяльності учнів.
- •6.Зміст і методика вивчення теми «Закони ідеального газу».
- •8.Тверді тіла. Аморфні і кристалічні тіла. Класифікація кристалів за типом зв’язків. Теплоємність кристалів за Ейнштейном і Дебієм. Рідкі кристали. Кристалічні тіла
- •Класифікація кристалів за типом зв’язків.
- •Аморфні тіла
- •Теплоємність кристалів.
- •Рідкі кристали.
- •9. Методика вивчення механічних коливань і хвиль в старшій школі
- •12 Науково-методичний аналіз теми «Механічний рух» в курсі фізики другого ступеня.
- •18.Науково-методичний і методологічний аналіз основних питань теми «Основні положення мкт» у курсі фізики. Основні положення молекулярно-кінетичної теорії.
- •Основне рівняння мкт.
- •Рівняння стану ідеального газу.
- •Перше начало термодинаміки
- •11.Опис стану частинки за допомогою квантових чисел. Спін. Стан електрона в одно- та багатоелектронному атомі. Періодична система елементів д.І.Менделєєва.
- •64.Скласти фрагмент конспекту уроку-лабораторної роботи «Складання електромагніту і випробування його дії».
- •77.Гравітаційне поле. Задача Ньютона. Закон всесвітнього тяжіння. Досліди Кавендіша. Інертна і гравітаційна маса. Гравітаційне поле
- •Закон всесвітнього тяжіння
- •Дослід Кавендіша:
- •Маса тіла
- •14.Класифікація елементарних частинок. Закони збереження і межі їх застосування. Елементарні частинки і фундаментальні взаємодії.
- •Класифікація елементарних частинок
- •Типи взаємодії
- •17. Електромагнітні коливання. Коливальний контур. Власні, вільні і вимушені коливання. Генерація незатухаючих електромагнітних коливань.
- •20.Закони збереження у фізиці. Закон збереження імпульсу
- •Закон збереження енергії в механіці.
- •Закон збереження моменту імпульсу
- •31.Поляризація світла. Поляризація при відбиванні від діелектрика. Закон Брюстера і Малюса. Поляризаційні прилади та їх застосування.
- •33.Радіоактивність. Закон радіоактивного розпаду. Природа альфа-, бета- і гама-випромінювання. Дозиметрія і захист від випромінювання.
- •35.Магнітне поле в речовині. Діа-, пара- і феромагнетики та їх магнітні властивості на основі електронної теорії речовини.
- •38 Науково-методичний і методологічний аналіз основних питань теми «Хвильова оптики». Формування поняття «корпускуолярно-хвильовий дуалізм».
- •41.Фотоефект і його застосування.
- •18.9. Ефект Комптона
- •42 Диференціація навчання фізики: педагогічна доцільність можливі форми. Профільне і поглиблене вивчення фізики.
- •43.Дві основні задачі динаміки точки. Принцип причинності в класичній механіці. Принцип відносності Галілея. Поняття про неінерціальні системи відліку.
- •Кінематика матеріальної точки
- •Система відліку.
- •Перетворення Галілея
- •44 Робота вчителя фізики як дослідника. Вивчення рівня знань, умінь і навичок учнів з фізики.
- •Циркуляція намагнічування. Вектор напруженості магнітного поля
- •Магнітне поле в речовині. Діа-пара- і феромагнетики та їх властивості
- •49.Постулати і принципи квантової механіки. Хвильова функція. Рівняння Шредінгера. Властивості стаціонарних станів. Частинка в потенціальній ямі.
- •Фундаментальні експерименти в шкільному курсі
- •Статистичне тлумачення другого закону термодинаміки
- •53.Температура і методи її вимірювання. Поняття температури в статистичній фізиці і термодинаміці.
- •Базовий навчальний план
- •Старша школа
- •56.Ідеальний газ ферміонів. Статистика Фермі-Дірака теплоємності речовин.
- •Класифікація елементарних частинок
- •Типи взаємодії
- •26.Ядерні сили та їх властивості. Моделі ядра. Ядерні реакції поділу і синтезу. Ланцюгова реакція. Ядерна енергетика і екологія. Проблеми термоядерних реакцій
- •36.Контроль знань учнів з фізики. Методи і форми контролю.
- •I рівень - репродуктивний:
- •II рівень - теоретичний:
- •III рівень - практичний:
- •IV рівень - творчий:
- •2.Перевірка знань учнів покликана встановити рівень засвоєння знань учнями, міцність і дієвість умінь і навичок.
- •I рівень - репродуктивний:
- •II рівень - теоретичний:
- •III рівень - практичний:
- •IV рівень - творчий:
- •5. Останнім часом набувають ваги нетрадиційні способи контролю:
- •1. Тести - підбірка питань і коротких задач, об'єднаних спільною темою або метою;
- •2. Програмований контроль - машинний і безмашинний.
- •Хід уроку.
- •Задачі, розв'язувані на уроці
- •V Домашнє завдання
- •58.Скласти фрагмент конспекту уроку з теми «Агрегатні стани речовини» (актуалізація опорних знань).
- •61.Скласти фрагмент конспекту уроку з теми «Способи зміни внутрішньої енергії тіла» (пояснення нового матеріалу.
- •72.Проблемне навчання фізики. Логіка проблемного уроку.
- •52.Критерії оцінювання навчальних досягнень учнів під час розв`язування задач з фізики.
- •66.Фізика як навчальний предмет. Аналіз можливих систем побудови шкільного курсу фізики.
6.Зміст і методика вивчення теми «Закони ідеального газу».
МЕТА. Оволодіти фізичними і педагогічними принципами вивчення
молекулярної фізики в 10 класі та методикою формування основних понять курсу.
Основні питання
1.Поняття ідеального газу в курсі фізики середньої школи. Вивчення особливостей теплового руху молекул.
2.Методика вивчення основного рівняння молекулярно-кінетичної теорії газів.
3.Науково-методичний аналіз наслідків основного рівняння молякулярно-
кінетичноїтеоріїгазів
4.Методика роз’язування задач на основне рівняннямолекулярно-кінетичної
теоріїгазів.
Для опису властивостей реальних газів необхідно враховувати розміри молекул і сили взаємодії між ними. Але при невеликих тисках і дуже низьких температурах розмірами молекули і їх взаємодією можна знехтувати.
Такий газ, молекули якого можна вважати матеріальними точками, які не взаємодіють між собою, називається ідеальним газом.
Стан газу характеризується трьома величинами – об’ємом V, тиском P і температурою T. Ці величини називаються параметрами газу. Всі параметри даної маси газу пов’язані між собою з допомогою рівняння стану газу.
,
(1)
де B – деяка константа.
Ця константа для 1 моля позначається буквою R і називається універсальною газовою сталою. Чисельне значення сталої R знайдемо, підставивши в рівняння стану значення параметрів газу в нормальних умовах:

Отже для 1 моля маємо таке рівняння:
PV=RT(2)
Для будь-якої маси газу m рівняння стану запишеться так:
PV=(m/)RT(3)
Це рівняння називається рівнянням Клайперона-Мендєлєєва. В формулі /3/ (m/)являє собою число молей даної маси газу.
Відмітимо, що для того, щоб рівняння /2/ описувало властивості реального газу, в нього потрібно ввести поправки на об’єм В який займали б молекули газу при щільному упакуванні і на силу притягання між молекулами a/V2. Тоді одержимо таке рівняння:
(P-a/V2)(V-B) = RT(4)
Рівняння /4/ називають рівнянням Ван-дер-Ваальса. Сталі а і в називають поправними Ван-дер-Ваальса. З формули /4/ випливає, що при р:
V-b0, тобто Vb
Отже, при збільшенні тиску об’єм газу прямує до власного об’єму молекул газу, а не до нуля, формула /4/ є набагато кращим наближенням до дійсності, ніж /2/. Але і вона не абсолютно точна.
Ідеальним називають такий газ, для якого можна знехтувати розмірами молекул та силами молекулярної взаємодії. Молекули в такому газі співударяються за законом співударяння пружних куль. Реальні гази поводять себе як ідеальний тоді, коли середня відстань між молекулами у багато разів перевищує їхні розміри, тобто коли розрідження досить велике. Газ може бути в різних станах, тобто деяка маса газу має об’єм V, тиск p і температуру Т. Величини V, p,Т , що характеризують стан газу, називаються термодинамічними параметрами. Процеси, що відбуваються при сталому значенні одного з параметрів стану ( Т, V або p) з певною сталою масою газу, називаються ізопроцесами.
Ізотермічний процес - процес , що відбувається при сталій температурі ( Т= const). За законом Бойля-Маріотта, тиск даної маси газу при сталій температурі обернено пропорційний об’єму газу. Отже,
або р1V1=р2V2= const
Ізобаричний процес – процес, який відбувається при сталому тиску
( р= const).
Ізохоричний процес – це процес , який відбувається при сталому об’ємі (V = const). Виходячи із закону Шарля, тиск даної маси газу при сталому об’ємі пропорційний його абсолютній температурі:
р = р0 ( 1+ jt)
