
- •1 Общие сведения по геодезии
- •1.1 Предмет и содержание геодезии
- •1.3 Краткие сведения о возникновении и развитии геодезии
- •2 Системы координат и ориентирование
- •2.1 Понятие о форме и размерах Земли
- •2.2 Системы координат и высот, применяемые в геодезии
- •2.3 Ориентирование линий
- •2.4 Прямая и обратная геодезические задачи
- •3 Топографические планы и карты
- •3.1 Изображение земной поверхности на плоскости.
- •3.2 Топографические материалы: план, карта, профиль
- •3.3 Масштабы планов и карт. Точность масштаба
- •3.4 Понятие о разграфке и номенклатуре
- •3.5 Условные знаки топографических планов и карт
- •3.6 Рельеф местности и его изображение на планах и картах.
- •3.7 Решение инженерных задач по планам и картам
- •3.8 Определение площадей по картам и планам
- •3.9 Понятие об электронных картах
- •4 Основные сведения из теории
- •4.1 Классификация погрешностей геодезических измерений.
- •4.2 Принцип арифметической середины
- •4.3 Средняя квадратическая погрешность одного измерения.
- •4.4 Закон нормального распределения погрешностей.
- •4.5 Средняя квадратическая погрешность функции
- •4.6 Двойные измерения и оценка их точности
- •4.7 Неравноточные измерения
- •4.8 Понятия об уравнивании геодезических измерений
- •5 Измерение углов
- •5.1 Принцип измерения горизонтальных и вертикальных углов.
- •5.2 Основные части теодолита
- •5.3 Классификация теодолитов
- •5.4 Поверки и юстировки теодолитов
- •5.5 Измерение горизонтальных углов. Точность измерений
- •5.6 Измерение вертикальных углов. Место нуля и его поверка
- •5.7 Простейшие угломерные приборы: экер и эклиметр
- •5.8 Электронные теодолиты и тахеометры
- •6 Измерение расстояний
- •6.1 Общие сведения о линейных измерениях
- •6.2 Обозначение точек на местности
- •6.3 Вешение линий
- •6.4 Землемерные ленты и рулетки. Их устройство
- •6.5 Измерение линий мерными приборами.
- •6.6 Горизонтальное проложение наклонной линии
- •6.7 Измерение длин линий дальномерами. Нитяной дальномер,
- •6.8 Измерение расстояний светодальномерами
- •6.9 Определение недоступных расстояний
- •7 Нивелирование
- •7.1 Сущность, значение и виды нивелирования
- •7.2 Способы геометрического нивелирования
- •7.3 Влияние кривизны Земли и рефракции
- •7.4 Понятие о Государственной нивелирной сети.
- •7.5 Нивелирные рейки и их поверки
- •7.6 Нивелиры, их классификация, устройство и поверки
- •7.7 Цифровые и лазерные нивелиры. Штрихкодовые рейки
- •7.8 Техническое нивелирование и нивелирование IV класса
- •7.9 Тригонометрическое нивелирование
- •8 Геодезические сети
- •8.1 Общие сведения о плановых геодезических сетях.
- •8.2 Методы построения плановых геодезических сетей
- •8.3 Государственные геодезические сети
- •8.4 Геодезические сети сгущения
- •8.5 Современная концепция развития
- •9 Съемочные геодезические сети
- •9.1 Общие сведения
- •9.2 Теодолитные ходы и их виды
- •9.3 Полевые работы при проложении теодолитных ходов
- •9.4 Привязка теодолитных ходов
- •9.5 Построение съемочной сети методом микротриангуляции
- •9.6 Определение координат точек съемочной сети
- •10 Топографические съемки
- •10.1 Виды топографических съемок. Выбор масштаба
- •10.2 Теодолитная съемка
- •10.3 Способы съемки ситуации местности. Абрис
- •11 Камеральные работы при теодолитной съемке
- •11.1 Обработка полевых журналов теодолитной съемки
- •11.2 Вычисление координат точек замкнутого теодолитного хода
- •11.3 Уравнивание углов и приращений координат
- •11.4 Составление планов теодолитной съемки
- •11.5 Применение современных программных комплексов
- •11.6 Применение геодезических работ и топографических съемок
- •Оглавление
- •246653, Г. Гомель, ул. Кирова, 34.
7.7 Цифровые и лазерные нивелиры. Штрихкодовые рейки
В связи с возрастающими требованиями к качеству и точности инженерно-геодезических работ в настоящее время широкое применение находят цифровые и лазерные нивелиры.
Цифровой нивелир. Цифровой нивелир – это тот же высокоточный оптический нивелир, но с автоматическим сбором, хранением и обработкой полученной информации (рисунок 7.14). Это значит, что все основные условия, необходимые для выполнения высокоточных измерений оптическими нивелирами, должны соблюдаться и для цифровых нивелиров.
Работы
по выполнению геодезических измерений
выполняются в комплекте с рейкой, имеющей
шкалу со штрихкодовым рисунком. На
лицевой стороне штрихкодовой рейки
нанесена растровая шкала чередуемых
черных полос и белых промежутков. Их
ширина по высоте кодирована. Световые
волны от штрихкодового рисунка
воздействуют на декодирующие датчики
нивелира. Визирный луч нивелира
устанавливается горизонтально с помощью
компенсатора. Декодирующее устройство
расшифровывает высотность нивелира
относительно рейки по соотношению
поступивших в объектив световых
воздействий от темных и светлых реечных
полос. Процессор нивелира осуществляет
счет измеренных превышений и их суммы
с точностью 0,1 мм, а также определяет
расстояние до реек и неравенство плеч
нивелирования. Времяснятия
отсчетов по рейке составляет 2–4 с.
Электроникой прибора автоматически
вводятся поправки за кривизну Земли,
рефракцию и погрешность отклонения
визирного луча от горизонта. Результаты
измерений с уже введенными поправками
отслеживаются на дисплее и по желанию
оператора могут направляться в память
нивелира. Программа реализует
последовательное вычисление и вывод
на дисплей получающихся высот точек
установки рейки.
Лазерные
нивелиры
предназначены для измерения превышений
и передачи высотных отметок. Нивелир
излучает видимый пучок света, относительно
которого производят измерения превышений.
В лазерных геодезических приборах в
качестве излучателя светового потока
используются оптические квантовые
генераторы (лазеры), которые бывают
твердотельные, жидкостные, газовые и
полупроводниковые. В геодезических
приборах используют газовые и
полупроводниковые лазеры.
В практике геодезического обеспечения строительства используются газовые гелий-неоновые лазеры непрерывного излучения, работающие в видимой части светового диапазона и излучающие узконаправленный пучок света. В нивелирах с уровнем ось светового пучка приводят в горизонтальное положение цилиндрическим уровнем, а в нивелирах- автоматах – компенсаторами.
В настоящее время лазерные нивелиры выпускаются в основном с автоматически горизонтируемым пучком излучения, вращающимся лазерным лучом, что дает возможность формировать в пространстве световые линии и плоскости. Положение этой плоскости фиксируется на специальной рейке или стенах зданий. На рисунке 7.15 показан лазерный нивелир фирмы «Вильд». Прибор устанавливается на штативе и с помощью трех подъемных винтов приводится в отвесное положение. Световая плоскость фиксируется визуально или с помощью фотоприемного устройства. Нивелир может быть установлен так, чтобы формировалась вертикальная плоскость. Он снабжен вычислительным устройством, позволяющим выполнять автоматическое вычисление превышений, высот и расстояний.