
- •1 Общие сведения по геодезии
- •1.1 Предмет и содержание геодезии
- •1.3 Краткие сведения о возникновении и развитии геодезии
- •2 Системы координат и ориентирование
- •2.1 Понятие о форме и размерах Земли
- •2.2 Системы координат и высот, применяемые в геодезии
- •2.3 Ориентирование линий
- •2.4 Прямая и обратная геодезические задачи
- •3 Топографические планы и карты
- •3.1 Изображение земной поверхности на плоскости.
- •3.2 Топографические материалы: план, карта, профиль
- •3.3 Масштабы планов и карт. Точность масштаба
- •3.4 Понятие о разграфке и номенклатуре
- •3.5 Условные знаки топографических планов и карт
- •3.6 Рельеф местности и его изображение на планах и картах.
- •3.7 Решение инженерных задач по планам и картам
- •3.8 Определение площадей по картам и планам
- •3.9 Понятие об электронных картах
- •4 Основные сведения из теории
- •4.1 Классификация погрешностей геодезических измерений.
- •4.2 Принцип арифметической середины
- •4.3 Средняя квадратическая погрешность одного измерения.
- •4.4 Закон нормального распределения погрешностей.
- •4.5 Средняя квадратическая погрешность функции
- •4.6 Двойные измерения и оценка их точности
- •4.7 Неравноточные измерения
- •4.8 Понятия об уравнивании геодезических измерений
- •5 Измерение углов
- •5.1 Принцип измерения горизонтальных и вертикальных углов.
- •5.2 Основные части теодолита
- •5.3 Классификация теодолитов
- •5.4 Поверки и юстировки теодолитов
- •5.5 Измерение горизонтальных углов. Точность измерений
- •5.6 Измерение вертикальных углов. Место нуля и его поверка
- •5.7 Простейшие угломерные приборы: экер и эклиметр
- •5.8 Электронные теодолиты и тахеометры
- •6 Измерение расстояний
- •6.1 Общие сведения о линейных измерениях
- •6.2 Обозначение точек на местности
- •6.3 Вешение линий
- •6.4 Землемерные ленты и рулетки. Их устройство
- •6.5 Измерение линий мерными приборами.
- •6.6 Горизонтальное проложение наклонной линии
- •6.7 Измерение длин линий дальномерами. Нитяной дальномер,
- •6.8 Измерение расстояний светодальномерами
- •6.9 Определение недоступных расстояний
- •7 Нивелирование
- •7.1 Сущность, значение и виды нивелирования
- •7.2 Способы геометрического нивелирования
- •7.3 Влияние кривизны Земли и рефракции
- •7.4 Понятие о Государственной нивелирной сети.
- •7.5 Нивелирные рейки и их поверки
- •7.6 Нивелиры, их классификация, устройство и поверки
- •7.7 Цифровые и лазерные нивелиры. Штрихкодовые рейки
- •7.8 Техническое нивелирование и нивелирование IV класса
- •7.9 Тригонометрическое нивелирование
- •8 Геодезические сети
- •8.1 Общие сведения о плановых геодезических сетях.
- •8.2 Методы построения плановых геодезических сетей
- •8.3 Государственные геодезические сети
- •8.4 Геодезические сети сгущения
- •8.5 Современная концепция развития
- •9 Съемочные геодезические сети
- •9.1 Общие сведения
- •9.2 Теодолитные ходы и их виды
- •9.3 Полевые работы при проложении теодолитных ходов
- •9.4 Привязка теодолитных ходов
- •9.5 Построение съемочной сети методом микротриангуляции
- •9.6 Определение координат точек съемочной сети
- •10 Топографические съемки
- •10.1 Виды топографических съемок. Выбор масштаба
- •10.2 Теодолитная съемка
- •10.3 Способы съемки ситуации местности. Абрис
- •11 Камеральные работы при теодолитной съемке
- •11.1 Обработка полевых журналов теодолитной съемки
- •11.2 Вычисление координат точек замкнутого теодолитного хода
- •11.3 Уравнивание углов и приращений координат
- •11.4 Составление планов теодолитной съемки
- •11.5 Применение современных программных комплексов
- •11.6 Применение геодезических работ и топографических съемок
- •Оглавление
- •246653, Г. Гомель, ул. Кирова, 34.
6.9 Определение недоступных расстояний
В практике инженерно-геодезических работ часто оказывается невозможным непосредственное измерение расстояний между двумя точками, когда встречается местное препятствие (река, котлован, здание и т. д.). Такие расстояние называют недоступными и определяют косвенным путем. Например, для определения недоступного расстояния d через реку измеряют длину базиса b (рисунок 6.12) и углы α и β. По теореме синусов из треугольника АВС получим
d / sin α = b / sin γ = b / sin(1800 – α – β) = b / sin α + β) или d = b sin α / sin(α + β).
Для
контроля расстояниеd
определяют еще раз из треугольника
АВС1.
При отсутствии недопустимых расхождений
из двух результатов принимают среднее
арифметическое значение.
Точность определения недоступных расстояний во многом зависит от формы треугольника. Наилучшим считается равносторонний треугольник.
В том случае, когда на линии АВ нет видимости (рисунок 6.13), то для определения недоступного расстояния АВ измеряют длины сторон b1 и b2 и угол γ на точке С.
Расстояние d определяют по теореме косинусов:
___________________
d =√ b12 + b22 – 2b1b2 cos γ.
Наиболее благоприятным считается вариант, когда b1 = b2 и угол γ близок к 180о
sin α = b2 sin γ / d; sin β = b1 sin γ / d.
Углы α и β вычисляют для того, чтобы в точках А и В можно было указать направление линии d.
7 Нивелирование
7.1 Сущность, значение и виды нивелирования
Нивелирование – это вид геодезических измерений, в результате которых определяют превышения точек (разность высот), а также их высоты над принятой уровенной поверхностью. По результатам нивелирования изображают рельеф местности на планах и картах, строят профили земной поверхности, решают различные инженерные задачи при строительстве и эксплуатации сооружений. Существует несколько видов нивелирования: геометрическое, тригонометрическое, барометрическое, гидростатическое, механическое.
Г е о м е т р и ч е с к о е нивелирование – это нивелирование горизонтальным лучом визирования. Этот вид нивелирования выполняют с помощью геодезического прибора – нивелира и реек. Данный метод наиболее распространен и относительно прост. Его применяют для определения превышений как с высокой степенью точности, когда погрешность в определении превышений составляет не более 1 мм на 1 км расстояния, так и с более низкой точностью для решения различных инженерно-геодезических задач.
Т р и г о н о м е т р и ч е с к о е нивелирование – это нивелирование наклонным лучом визирования. Выполняют с помощью геодезических приборов, позволяющих измерять вертикальные углы или превышения (теодолиты, тахеометры, кипрегели). При данном виде нивелирования превышение можно определять с погрешностью до 4 см на 100 м расстояния.
Б а р о м е т р и ч е с к о е нивелирование – определение высот точек или превышений по измерениям давления воздуха. Давление воздуха измеряют с помощью приборов, называемых барометрами, а по разности давлений определяют превышение. Точность барометрического нивелирования невелика (колеблется от 0,5 до 2 м) и зависит от изменения метеоусловий. Применяют этот способ нивелирования в начальный период инженерных изысканий для всякого рода рекогносцировочных обследований.
Г и д р о с т а т и ч е с к о е нивелирование основано на свойстве жидкости в сообщающихся сосудах находиться на одном уровне. Превышение между точками может быть получено как разность отсчетов по шкалам сосудов соединенных между собой резиновым шлангом. Гидростатическое нивелирование применяется при строительно-монтажных работах для выверки конструкций в стесненных условиях. Часто используется при наблюдениях за деформациями инженерных сооружений. Точность его равна точности геометрического нивелирования.
М е х а н и ч е с к о е нивелирование производится при помощи специальных приборов, устанавливаемых на автомобилях, велосипедах, железнодорожных вагонах и т. д. При движении прибора сразу вычерчивается на специальной ленте профиль местности. Точность механического нивелирования примерно равна точности тригонометрического нивелирования. Этот способ находит применение при изысканиях линейных сооружений и для контроля положения железнодорожных путей.