
- •Основы информационных технологий
- •Оглавление
- •Предисловие
- •Современные информационные технологии
- •1.1 История, современное состояние и перспективы развития вычислительной техники
- •1.2 Элементная база, архитектура, сетевая компоновка, производительность
- •1.3 Понятие информации. Классификация и виды информационных технологий
- •Основные свойства информационных технологий.
- •1 .4 Операционные системы
- •2 Основные программные средства информационных технологий
- •2.1. Программное обеспечение. Текстовые редакторы, их возможности и назначение
- •2.2. Графические редакторы
- •2.3. Электронные таблицы
- •2.4. Сервисные инструментальные программные средства
- •2.5. Системы математических вычислений MatLab
- •2.6 Система подготовки презентаций
- •3 Сетевые технологии и интернет
- •3.1 Классификация компьютерных сетей
- •3.2 Семиуровневая модель структуры протоколов связи
- •2.3. Взаимодействие компьютеров в сети
- •3.3 Организационная структура Internet
- •3.4 Инструментальные средства создания web-сайтов. Основы web-дизайна
- •3.5 Языки разметки гипертекста html и xml
- •3.6 Скриптовые языки программирования
- •4 Системы управления базами данных
- •4.1. Классификация систем управления базами данных
- •4.2 Модели данных
- •4.3 Моделирование баз данных
- •4.4 Архитектура и функциональные возможности субд. Языковые и программные средства субд
- •4.5 Общая характеристика субд ms Access
- •4.6 Основные объекты ms Access
- •4.7 Основы языка sql
- •Контрольные вопросы
- •5 Защита информации при использовании информационных технологий
- •5.1 Основы информационной безопасности
- •5.2. Методы и средства защиты информации
- •5.3 Защита от несанкционированного доступа к данным
- •5.4 Классы безопасности компьютерных систем
- •5.5 Основные аспекты построения системы информационной безопасности
- •6 Математическое моделирование и численные методы
- •6.1 Математические модели и численные методы решения задач в различных предметных областях
- •6.2 Численное дифференцирование и интегрирование
- •6.2.1 Особенность задачи численного дифференцирования
- •6.2.2 Интерполяционная формула Лагранжа для равноотстоящих узлов
- •6.2.3 Численное дифференцирование на основе интерполяционной формулы Лагранжа
- •6.2.4 Численное дифференцирование на основе интерполяционной формулы Ньютона
- •6.2.5 Постановка задачи численного интегрирования
- •6.2.6 Квадратурные формулы Ньютона-Котеса
- •6.2.7 Формула трапеций
- •6.2.8 Формула Симпсона
- •6.2.9 Оценка точности квадратурных формул
- •6.3 Методы решения обыкновенных дифференциальных уравнений
- •6.3.1 Задача Коши и краевая задача
- •6.3.1.1 Классификация уравнений
- •6.3.1.2 Задача Коши
- •6.3.2 Одношаговые методы решения задачи Коши
- •6.3.2.1 Метод Эйлера
- •6.3.2.2 Модифицированный метод Эйлера
- •6.3.2.3 Метод Рунге-Кутта четвертого порядка
- •6.3.2.4 Погрешность решения и выбор шага
- •6.3.3 Многошаговые методы решения задачи Коши
- •6.3.3.1 Многошаговые методы
- •6.3.3.2 Метод Адамса
- •6.3.3.3 Методы прогноза и коррекции (предиктор-корректор)
- •6.3.3.4 Общая характеристика многошаговых методов
- •6.3.4 Краевая задача и метод стрельбы
- •6.3.4.1 Краевая задача
- •6.3.4.2 Метод стрельбы
- •6.3.4.3 Метод стрельбы для линейного дифференциального уравнения
- •6.4 Решение дифференциальных уравнений в чстных производных
- •6.4.1 Краткие теоретические сведения
- •6.4.2 Классификация уравнений по математической форме
- •6.4.3 Основы метода конечных разностей
- •6.4.3.1 Построение сетки
- •6.4.3.2 Аппроксимация уравнения эллиптического типа
- •6.4.3.3 Аппроксимация уравнения гиперболического типа
- •6.4.3.4 Аппроксимация уравнения параболического типа
- •6.4.3.5 Погрешность решения
- •6.4.4 Основы метода конечных элементов
- •6.4.4.1. Формирование сетки
- •6.4.4.2 Конечно-элементная аппроксимация
- •6.4.4.3 Построение решения
- •6.6 Элементы математической статистики
- •6.6.1 Генеральная совокупность. Выборка. Статистические ряды
- •6.6.2 Графическое изображение вариационных рядов. Эмпирическое распределение
- •6.6.3 Средние величины и показатели вариации
- •6.6.4 Средняя арифметическая и ее свойства
- •6.6.5 Дисперсия и ее свойства. Среднее квадратическое отклонение
- •6.6.6 Коэффициент вариации
- •6.6.7 Структурные средние
- •6.6.8 Законы распределения случайных величин
- •6.6.9 Статистические гипотезы
- •7 Методы оптимизации и системы поддержки принятия решений
- •7.1 Характеристика методов решения задач оптимизации
- •7.1.1 Численные методы безусловной оптимизации нулевого порядка
- •7.1.1.1 Основные определения
- •7.1.1.2 Классификация методов
- •7.1.1.3 Общая характеристика методов нулевого порядка
- •7.1.1.4 Метод прямого поиска (метод Хука-Дживса)
- •7.1.1.5 Метод деформируемого многогранника (метод Нелдера—Мида)
- •7.1.1.6 Метод вращающихся координат (метод Розенброка)
- •7.1.1.7 Метод параллельных касательных (метод Пауэлла)
- •7.1.2 Численные методы безусловной оптимизации первого порядка
- •7.1.2.1 Минимизация функций многих переменных. Основные положения
- •7.1.2.2 Метод наискорейшего спуска
- •7.1.2.3 Метод сопряженных градиентов
- •7.1.3 Численные методы безусловной оптимизации второго порядка
- •7.1.3.1 Особенности методов второго порядка
- •7.1.3.2 Метод Ньютона
- •7.2 Линейное программирование
- •7.2.1 Транспортная задача линейного программирования
- •7.2.1.1 Постановка задачи
- •7.2.1.2 Венгерский метод
- •7.2.1.3 Метод потенциалов
- •7.3 Прямые методы условной оптимизации
- •7.3.1 Основные определения
- •7.3.2 Метод проекции градиента
- •7.3.3 Комплексный метод Бокса
- •7.4 Методы штрафных функций
- •7.4.1 Основные определения
- •7.4.2 Методы внутренних штрафных функций
- •7.4.3 Методы внешних штрафных функций
- •7.4.4 Комбинированные алгоритмы штрафных функций
- •7.5 Информационные технологии поддержки принятия решений
- •7.6 Информационные технологии экспертных систем Характеристика и назначение
- •Список литературы
7.4 Методы штрафных функций
7.4.1 Основные определения
Методы штрафных функций относятся к группе непрямых методов решения задач нелинейного программирования:
f(x)
min;
(7.60)
gi(x)
0,
i
1,
..., k;
hj(x)
0,
j
1,
..., m;
a
x
b.
(7.61)
Они преобразуют задачу с ограничениями в последовательность задач безусловной оптимизации некоторых вспомогательных функций. Последние получаются путем модификации целевой функции с помощью функций-ограничений таким образом, чтобы ограничения в явном виде в задаче оптимизации не фигурировали. Это обеспечивает возможность применения методов безусловной оптимизации. В общем случае вспомогательная функция имеет вид
F(x,a)
f(x)
+Ф(х, а). (7.62)
Здесь f(x)
- целевая
функция задачи оптимизации; Ф(х,
а) - “штрафная”
функция; параметр а
0.
Точку безусловного минимума функции
F(x, a) будем
обозначать через х(а).
В зависимости от вида Ф(х, а) различают методы внутренних штрафных, или барьерных, функций и методы внешних штрафных функций.
7.4.2 Методы внутренних штрафных функций
Эти методы применяются для решения задач нелинейного программирования с ограничениями-неравенствами. В рассматриваемых методах функции Ф(x, а) подбирают такими, чтобы их значения неограниченно возрастали при приближении к границе допустимой области G (рис. 7.12). Иными словами, приближение к границе «штрафуется» резким увеличением значения функции F(x, а). На границе G построен «барьер», препятствующий нарушению ограничении в процессе безусловной минимизации F(x, a). Поиск минимума вспомогательной функции F(x, а) необходимо начинать с внутренней точки области G . При этом в процессе оптимизации траектория спуска никогда не выйдет за пределы допустимой области. Все перечисленные особенности функции Ф (х, а) определили наименование рассматриваемой группы методов.
Рис. 7.12 ‑ Внутренняя штрафная функция
Таким образом, внутренняя штрафная функция Ф(х, а) может быть определена следующим образом:
(7.63)
Здесь dG -граница области G.
Общий вид внутренней штрафной функции
, (7.64)
где j - непрерывные дифференцируемые функции, определяемые ограничениями-неравенствами исходной задачи нелинейного программирования. Вспомогательная функция F(x, а) при этом имеет форму
. (7.65)
Она определена в области G и неограниченно возрастает, если hj(х) -> 0 для некоторого j. В качестве внутренних штрафных функций используют, например, такие:
;
. (7.66)
Алгоритм метода
внутренних штрафных функций состоит в
следующем. В качестве начальной точки
х[0]
выбирается произвольная внутренняя
точка области G.
Задается некоторая монотонно убывающая
сходящаяся к нулю последовательность
{ak},
k
1,
2, ..., положительных чисел. Для первого
элемента а1
этой последовательности решается задача
безусловной минимизации функции F(x,
а), в результате
чего определяется точка х(а1).
Эта точка используется в качестве
начальной для решения задачи поиска
минимума функции F(x,
а2),
где а2
а1,
и т. д. Таким образом, решается
последовательность задач безусловной
минимизации функций F(х,
аk),
k
1,
2, ..., причем решение предыдущей задачи
х(аk)
используется в качестве начальной точки
для поиска последующего вектора х(аk+1).
Последовательность полученных таким
образом точек х(аk)
сходится к оптимальному решению исходной
задачи - локальному минимуму х*.
Вычисления прекращают при выполнении
условий:
|f(x[k])
- f(x[k‑l])|
; (7.67)
||x[k]
- x[k‑l]||
; (7.68)
Здесь , - заданные числа, определяющие точность вычислений.
Можно показать, что рассмотренный метод внутренних штрафных функций обладает следующими свойствами:
1)
;
2)
и
монотонно
убывает;
3)
Эти свойства справедливы для задач, содержащих непрерывные функции и имеющих локальные минимумы внутри области G.