
- •Основы информационных технологий
- •Оглавление
- •Предисловие
- •Современные информационные технологии
- •1.1 История, современное состояние и перспективы развития вычислительной техники
- •1.2 Элементная база, архитектура, сетевая компоновка, производительность
- •1.3 Понятие информации. Классификация и виды информационных технологий
- •Основные свойства информационных технологий.
- •1 .4 Операционные системы
- •2 Основные программные средства информационных технологий
- •2.1. Программное обеспечение. Текстовые редакторы, их возможности и назначение
- •2.2. Графические редакторы
- •2.3. Электронные таблицы
- •2.4. Сервисные инструментальные программные средства
- •2.5. Системы математических вычислений MatLab
- •2.6 Система подготовки презентаций
- •3 Сетевые технологии и интернет
- •3.1 Классификация компьютерных сетей
- •3.2 Семиуровневая модель структуры протоколов связи
- •2.3. Взаимодействие компьютеров в сети
- •3.3 Организационная структура Internet
- •3.4 Инструментальные средства создания web-сайтов. Основы web-дизайна
- •3.5 Языки разметки гипертекста html и xml
- •3.6 Скриптовые языки программирования
- •4 Системы управления базами данных
- •4.1. Классификация систем управления базами данных
- •4.2 Модели данных
- •4.3 Моделирование баз данных
- •4.4 Архитектура и функциональные возможности субд. Языковые и программные средства субд
- •4.5 Общая характеристика субд ms Access
- •4.6 Основные объекты ms Access
- •4.7 Основы языка sql
- •Контрольные вопросы
- •5 Защита информации при использовании информационных технологий
- •5.1 Основы информационной безопасности
- •5.2. Методы и средства защиты информации
- •5.3 Защита от несанкционированного доступа к данным
- •5.4 Классы безопасности компьютерных систем
- •5.5 Основные аспекты построения системы информационной безопасности
- •6 Математическое моделирование и численные методы
- •6.1 Математические модели и численные методы решения задач в различных предметных областях
- •6.2 Численное дифференцирование и интегрирование
- •6.2.1 Особенность задачи численного дифференцирования
- •6.2.2 Интерполяционная формула Лагранжа для равноотстоящих узлов
- •6.2.3 Численное дифференцирование на основе интерполяционной формулы Лагранжа
- •6.2.4 Численное дифференцирование на основе интерполяционной формулы Ньютона
- •6.2.5 Постановка задачи численного интегрирования
- •6.2.6 Квадратурные формулы Ньютона-Котеса
- •6.2.7 Формула трапеций
- •6.2.8 Формула Симпсона
- •6.2.9 Оценка точности квадратурных формул
- •6.3 Методы решения обыкновенных дифференциальных уравнений
- •6.3.1 Задача Коши и краевая задача
- •6.3.1.1 Классификация уравнений
- •6.3.1.2 Задача Коши
- •6.3.2 Одношаговые методы решения задачи Коши
- •6.3.2.1 Метод Эйлера
- •6.3.2.2 Модифицированный метод Эйлера
- •6.3.2.3 Метод Рунге-Кутта четвертого порядка
- •6.3.2.4 Погрешность решения и выбор шага
- •6.3.3 Многошаговые методы решения задачи Коши
- •6.3.3.1 Многошаговые методы
- •6.3.3.2 Метод Адамса
- •6.3.3.3 Методы прогноза и коррекции (предиктор-корректор)
- •6.3.3.4 Общая характеристика многошаговых методов
- •6.3.4 Краевая задача и метод стрельбы
- •6.3.4.1 Краевая задача
- •6.3.4.2 Метод стрельбы
- •6.3.4.3 Метод стрельбы для линейного дифференциального уравнения
- •6.4 Решение дифференциальных уравнений в чстных производных
- •6.4.1 Краткие теоретические сведения
- •6.4.2 Классификация уравнений по математической форме
- •6.4.3 Основы метода конечных разностей
- •6.4.3.1 Построение сетки
- •6.4.3.2 Аппроксимация уравнения эллиптического типа
- •6.4.3.3 Аппроксимация уравнения гиперболического типа
- •6.4.3.4 Аппроксимация уравнения параболического типа
- •6.4.3.5 Погрешность решения
- •6.4.4 Основы метода конечных элементов
- •6.4.4.1. Формирование сетки
- •6.4.4.2 Конечно-элементная аппроксимация
- •6.4.4.3 Построение решения
- •6.6 Элементы математической статистики
- •6.6.1 Генеральная совокупность. Выборка. Статистические ряды
- •6.6.2 Графическое изображение вариационных рядов. Эмпирическое распределение
- •6.6.3 Средние величины и показатели вариации
- •6.6.4 Средняя арифметическая и ее свойства
- •6.6.5 Дисперсия и ее свойства. Среднее квадратическое отклонение
- •6.6.6 Коэффициент вариации
- •6.6.7 Структурные средние
- •6.6.8 Законы распределения случайных величин
- •6.6.9 Статистические гипотезы
- •7 Методы оптимизации и системы поддержки принятия решений
- •7.1 Характеристика методов решения задач оптимизации
- •7.1.1 Численные методы безусловной оптимизации нулевого порядка
- •7.1.1.1 Основные определения
- •7.1.1.2 Классификация методов
- •7.1.1.3 Общая характеристика методов нулевого порядка
- •7.1.1.4 Метод прямого поиска (метод Хука-Дживса)
- •7.1.1.5 Метод деформируемого многогранника (метод Нелдера—Мида)
- •7.1.1.6 Метод вращающихся координат (метод Розенброка)
- •7.1.1.7 Метод параллельных касательных (метод Пауэлла)
- •7.1.2 Численные методы безусловной оптимизации первого порядка
- •7.1.2.1 Минимизация функций многих переменных. Основные положения
- •7.1.2.2 Метод наискорейшего спуска
- •7.1.2.3 Метод сопряженных градиентов
- •7.1.3 Численные методы безусловной оптимизации второго порядка
- •7.1.3.1 Особенности методов второго порядка
- •7.1.3.2 Метод Ньютона
- •7.2 Линейное программирование
- •7.2.1 Транспортная задача линейного программирования
- •7.2.1.1 Постановка задачи
- •7.2.1.2 Венгерский метод
- •7.2.1.3 Метод потенциалов
- •7.3 Прямые методы условной оптимизации
- •7.3.1 Основные определения
- •7.3.2 Метод проекции градиента
- •7.3.3 Комплексный метод Бокса
- •7.4 Методы штрафных функций
- •7.4.1 Основные определения
- •7.4.2 Методы внутренних штрафных функций
- •7.4.3 Методы внешних штрафных функций
- •7.4.4 Комбинированные алгоритмы штрафных функций
- •7.5 Информационные технологии поддержки принятия решений
- •7.6 Информационные технологии экспертных систем Характеристика и назначение
- •Список литературы
7.1.1.3 Общая характеристика методов нулевого порядка
В этих методах для определения направления спуска не требуется вычислять производные целевой функции. Направление минимизации в данном случае полностью определяется последовательными вычислениями значений функции. Следует отметить, что при решении задач безусловной минимизации методы первого и второго порядков обладают, как правило, более высокой скоростью сходимости, чем методы нулевого порядка. Однако на практике вычисление первых и вторых производных функции большого количества переменных весьма трудоемко. В ряде случаев они не могут быть получены в виде аналитических функций. Определение производных с помощью различных численных методов осуществляется с ошибками, которые могут ограничить применение таких методов. Кроме того, на практике встречаются задачи, решение которых возможно лишь с помощью методов нулевого порядка, например задачи минимизации функций с разрывными первыми производными. Критерий оптимальности может быть задан не в явном виде, а системой уравнений. В этом случае аналитическое или численное определение производных становится очень сложным, а иногда невозможным. Для решения таких практических задач оптимизации могут быть успешно применены методы нулевого порядка. Рассмотрим некоторые из них.
7.1.1.4 Метод прямого поиска (метод Хука-Дживса)
Суть этого метода состоит в следующем. Задаются некоторой начальной точкой х[0]. Изменяя компоненты векторах[0], обследуют окрестность данной точки, в результате чего находят направление, в котором происходит уменьшение минимизируемой функцииf(x).В выбранном направлении осуществляют спуск до тех пор, пока значение функции уменьшается. После того как в данном направлении не удается найти точку с меньшим значением функции, уменьшают величину шага спуска. Если последовательные дробления шага не приводят к уменьшению функции, от выбранного направления спуска отказываются и осуществляют новое обследование окрестности и т. д.
Алгоритм метода прямого поиска состоит в следующем.
1. Задаются значениями координат хi[0] , i= 1, ...,п ,начальной точких[0], вектором изменения координатхв процессе обследования окрестности, наименьшим допустимым значениемекомпонентов х.
2. Полагают, что х[0] являетсябазисной точкой хб,и вычисляют значениеf(xб).
3. Циклически изменяют каждую координату хбi, i =1, ...,п ,базисной точкихб на величинухi,i= 1, ...,п ,т. е.хi[k] =хб + х;хi[k] = хбi- ?хi.При этом вычисляют значенияf(x[k])и сравнивают их со значениемf(xб).Еслиf(x[k]) < f(xб), то соответствующая координатахi, i = 1, ...,п ,приобретает новое значение, вычисленное по одному из приведенных выражений. В противном случае значение этой координаты остается неизменным. Если после изменения последнейп-й координатыf(x[k]) < f(xб), то переходят к п, 4. В противном случае ‑ к п. 7.
4. Полагают, что х[k] является новой базисной точкойхб ,и вычисляют значениеf(xб).
5. Осуществляют спуск из точки х[k] > хi[k+1]=2хi[k] ‑ xб , i = 1, ..., n , гдеxб -координаты предыдущей базисной точки. Вычисляют значениеf(x[k+1]).
6. Как и в п. 3, циклически изменяют каждую координату точки х[k+1], осуществляя сравнение соответствующих значений функцииf(х) со значениемf(х[k+1]), полученным в п. 5. После изменения последней координаты сравнивают соответствующее значение функцииf(x[k]) со значениемf(xб),полученным в п. 4. Еслиf(x[k]) < f(xб), то переходят к п. 4, в противном случае ‑ к п. 3. При этом в качестве базисной используют последнюю из полученных базисных точек.
7. Сравнивают значения хие. Если х <е, то вычисления прекращаются. В противном случае уменьшают значения хи переходят к п. 3.
Достоинством метода прямого поиска является простота его программирования на компьютере. Он не требует знания целевой функции в явном виде, а также легко учитывает ограничения на отдельные переменные, а также сложные ограничения на область поиска.
Недостаток метода прямого поиска состоит в том, что в случае сильно вытянутых, изогнутых или обладающих острыми углами линий уровня целевой функции он может оказаться неспособным обеспечить продвижение к точке минимума. Действительно, в случаях, изображенных на Рис. 7.4, аиб,каким бы малым ни брать шаг в направлениих1илиx2из точких’ нельзя получить уменьшения значения целевой функции.
Рис. 7.4 ‑ Прямой поиск: невозможность продвижения к минимуму:
а – С1 > C2 > C3; б ‑ С1 > C2
Напомним, что поверхностью уровня(на плоскости ‑линией уровня)является поверхность, получаемая приравниванием выражения функцииf(х) некоторой постоянной величинеС,т. е.f(х) = С .Во всех точках этой поверхности функция имеет одно и то же значениеС.Давая величинеСразличные значенияС1, ..., Сn,получают ряд поверхностей, геометрически иллюстрирующих характер функции.