
- •Основы информационных технологий
- •Оглавление
- •Предисловие
- •Современные информационные технологии
- •1.1 История, современное состояние и перспективы развития вычислительной техники
- •1.2 Элементная база, архитектура, сетевая компоновка, производительность
- •1.3 Понятие информации. Классификация и виды информационных технологий
- •Основные свойства информационных технологий.
- •1 .4 Операционные системы
- •2 Основные программные средства информационных технологий
- •2.1. Программное обеспечение. Текстовые редакторы, их возможности и назначение
- •2.2. Графические редакторы
- •2.3. Электронные таблицы
- •2.4. Сервисные инструментальные программные средства
- •2.5. Системы математических вычислений MatLab
- •2.6 Система подготовки презентаций
- •3 Сетевые технологии и интернет
- •3.1 Классификация компьютерных сетей
- •3.2 Семиуровневая модель структуры протоколов связи
- •2.3. Взаимодействие компьютеров в сети
- •3.3 Организационная структура Internet
- •3.4 Инструментальные средства создания web-сайтов. Основы web-дизайна
- •3.5 Языки разметки гипертекста html и xml
- •3.6 Скриптовые языки программирования
- •4 Системы управления базами данных
- •4.1. Классификация систем управления базами данных
- •4.2 Модели данных
- •4.3 Моделирование баз данных
- •4.4 Архитектура и функциональные возможности субд. Языковые и программные средства субд
- •4.5 Общая характеристика субд ms Access
- •4.6 Основные объекты ms Access
- •4.7 Основы языка sql
- •Контрольные вопросы
- •5 Защита информации при использовании информационных технологий
- •5.1 Основы информационной безопасности
- •5.2. Методы и средства защиты информации
- •5.3 Защита от несанкционированного доступа к данным
- •5.4 Классы безопасности компьютерных систем
- •5.5 Основные аспекты построения системы информационной безопасности
- •6 Математическое моделирование и численные методы
- •6.1 Математические модели и численные методы решения задач в различных предметных областях
- •6.2 Численное дифференцирование и интегрирование
- •6.2.1 Особенность задачи численного дифференцирования
- •6.2.2 Интерполяционная формула Лагранжа для равноотстоящих узлов
- •6.2.3 Численное дифференцирование на основе интерполяционной формулы Лагранжа
- •6.2.4 Численное дифференцирование на основе интерполяционной формулы Ньютона
- •6.2.5 Постановка задачи численного интегрирования
- •6.2.6 Квадратурные формулы Ньютона-Котеса
- •6.2.7 Формула трапеций
- •6.2.8 Формула Симпсона
- •6.2.9 Оценка точности квадратурных формул
- •6.3 Методы решения обыкновенных дифференциальных уравнений
- •6.3.1 Задача Коши и краевая задача
- •6.3.1.1 Классификация уравнений
- •6.3.1.2 Задача Коши
- •6.3.2 Одношаговые методы решения задачи Коши
- •6.3.2.1 Метод Эйлера
- •6.3.2.2 Модифицированный метод Эйлера
- •6.3.2.3 Метод Рунге-Кутта четвертого порядка
- •6.3.2.4 Погрешность решения и выбор шага
- •6.3.3 Многошаговые методы решения задачи Коши
- •6.3.3.1 Многошаговые методы
- •6.3.3.2 Метод Адамса
- •6.3.3.3 Методы прогноза и коррекции (предиктор-корректор)
- •6.3.3.4 Общая характеристика многошаговых методов
- •6.3.4 Краевая задача и метод стрельбы
- •6.3.4.1 Краевая задача
- •6.3.4.2 Метод стрельбы
- •6.3.4.3 Метод стрельбы для линейного дифференциального уравнения
- •6.4 Решение дифференциальных уравнений в чстных производных
- •6.4.1 Краткие теоретические сведения
- •6.4.2 Классификация уравнений по математической форме
- •6.4.3 Основы метода конечных разностей
- •6.4.3.1 Построение сетки
- •6.4.3.2 Аппроксимация уравнения эллиптического типа
- •6.4.3.3 Аппроксимация уравнения гиперболического типа
- •6.4.3.4 Аппроксимация уравнения параболического типа
- •6.4.3.5 Погрешность решения
- •6.4.4 Основы метода конечных элементов
- •6.4.4.1. Формирование сетки
- •6.4.4.2 Конечно-элементная аппроксимация
- •6.4.4.3 Построение решения
- •6.6 Элементы математической статистики
- •6.6.1 Генеральная совокупность. Выборка. Статистические ряды
- •6.6.2 Графическое изображение вариационных рядов. Эмпирическое распределение
- •6.6.3 Средние величины и показатели вариации
- •6.6.4 Средняя арифметическая и ее свойства
- •6.6.5 Дисперсия и ее свойства. Среднее квадратическое отклонение
- •6.6.6 Коэффициент вариации
- •6.6.7 Структурные средние
- •6.6.8 Законы распределения случайных величин
- •6.6.9 Статистические гипотезы
- •7 Методы оптимизации и системы поддержки принятия решений
- •7.1 Характеристика методов решения задач оптимизации
- •7.1.1 Численные методы безусловной оптимизации нулевого порядка
- •7.1.1.1 Основные определения
- •7.1.1.2 Классификация методов
- •7.1.1.3 Общая характеристика методов нулевого порядка
- •7.1.1.4 Метод прямого поиска (метод Хука-Дживса)
- •7.1.1.5 Метод деформируемого многогранника (метод Нелдера—Мида)
- •7.1.1.6 Метод вращающихся координат (метод Розенброка)
- •7.1.1.7 Метод параллельных касательных (метод Пауэлла)
- •7.1.2 Численные методы безусловной оптимизации первого порядка
- •7.1.2.1 Минимизация функций многих переменных. Основные положения
- •7.1.2.2 Метод наискорейшего спуска
- •7.1.2.3 Метод сопряженных градиентов
- •7.1.3 Численные методы безусловной оптимизации второго порядка
- •7.1.3.1 Особенности методов второго порядка
- •7.1.3.2 Метод Ньютона
- •7.2 Линейное программирование
- •7.2.1 Транспортная задача линейного программирования
- •7.2.1.1 Постановка задачи
- •7.2.1.2 Венгерский метод
- •7.2.1.3 Метод потенциалов
- •7.3 Прямые методы условной оптимизации
- •7.3.1 Основные определения
- •7.3.2 Метод проекции градиента
- •7.3.3 Комплексный метод Бокса
- •7.4 Методы штрафных функций
- •7.4.1 Основные определения
- •7.4.2 Методы внутренних штрафных функций
- •7.4.3 Методы внешних штрафных функций
- •7.4.4 Комбинированные алгоритмы штрафных функций
- •7.5 Информационные технологии поддержки принятия решений
- •7.6 Информационные технологии экспертных систем Характеристика и назначение
- •Список литературы
7.1.1.2 Классификация методов
Возможны два подхода к решению задачи отыскания минимума функции многих переменных f(x)=f(x1, ...,хn) при отсутствии ограничений на диапазон изменения неизвестных. Первый подход лежит в основекосвенных методов оптимизациии сводит решение задачи оптимизации к решению системы нелинейных уравнений, являющихся следствием условий экстремума функции многих переменных. Как известно, эти условия определяют, что в точке экстремумах*все первые производные функции по независимым переменным равны нулю:
,
i=1, …, n.(7.5)
Эти условия образуют систему пнелинейных уравнений, среди решений которой находятся точки минимума. Векторf’(х), составленный из первых производных функции по каждой переменной, т.е.
, (7.6)
называют градиентом скалярной функции f(x).Как видно, в точке минимума градиент равен нулю.
Решение систем нелинейных уравнений ‑ задача весьма сложная и трудоемкая. Вследствие этого на практике используют второй подход к минимизации функций, составляющий основу прямых методов.Суть их состоит в построении последовательности векторовх[0],х[1], …,х[n], таких, чтоf(х[0])>f(х[1])>f(х[n])>… В качестве начальной точкиx[0] может быть выбрана произвольная точка, однако стремятся использовать всю имеющуюся информацию о поведении функцииf(x),чтобы точкаx[0] располагалась как можно ближе к точке минимума. Переход (итерация) от точких [k] к точкех [k+1], k =0, 1, 2, ..., состоит из двух этапов:
выбор направления движения из точки х [k];
определение шага вдоль этого направления.
Методы построения таких последовательностей часто называют методами спуска,так как осуществляется переход от больших значений функций к меньшим.
Математически методы спуска описываются соотношением
x[k+1] =x[k] +akp[k], k = 0, 1, 2, ...,
где p[k] - вектор, определяющий направление спуска;ak- длина шага. В координатной форме:
(7.7)
Различные методы спуска отличаются друг от друга способами выбора двух параметров - направления спуска и длины шага вдоль этого направления. На практике применяются только методы, обладающие сходимостью. Они позволяют за конечное число шагов получить точку минимума или подойти к точке, достаточно близкой к точке минимума. Качество сходящихся итерационных методов оценивают по скорости сходимости.
В методах спуска решение задачи теоретически получается за бесконечное число итераций. На практике вычисления прекращаются при выполнении некоторых критериев (условий) останова итерационного процесса. Например, это может быть условие малости приращения аргумента
(7.8)
или функции
. (7.9)
Здесь k‑ номер итерации;,‑ заданные величины точности решения задачи.
Методы поиска точки минимума называются детерминированными,если оба элемента перехода отх[k] к x[k+l] (направление движения и величина шага) выбираются однозначно по доступной в точкех [k] информации. Если же при переходе используется какой-либо случайный механизм, то алгоритм поиска называетсяслучайным поиском минимума.
Детерминированные алгоритмы безусловной минимизации делят на классы в зависимости от вида используемой информации. Если на каждой итерации используются лишь значения минимизируемых функций, то метод называется методом нулевого порядка.Если, кроме того, требуется вычисление первых производных минимизируемой функции, то имеют место методыпервого порядка,при необходимости дополнительного вычисления вторых производных ‑методы второго порядка.
В настоящее время разработано множество численных методов для задач как безусловной, так и условной оптимизации. Естественным является стремление выбрать для решения конкретной задачи наилучший метод, позволяющий за наименьшее время использования ЭВМ получить решение с заданной точностью.
Качество численного метода характеризуется многими факторами: скоростью сходимости, временем выполнения одной итерации, классом решаемых задач и т. д. Решаемые задачи также весьма разнообразны: они могут иметь высокую и малую размерность, быть унимодальными (обладающими одним экстремумом) и многоэкстремальными и т. д. Один и тот же метод, эффективный для решения задач одного типа, может оказаться совершенно неприемлемым для задач другого типа. Очевидно, что разумное сочетание разнообразных методов, учет их свойств позволят с наибольшей эффективностью решать поставленные задачи. Многометодный способ решения весьма удобен в диалоговом режиме работы с ЭВМ. Для успешной работы в таком режиме очень полезно знать основные свойства, специфику методов оптимизации. Это обеспечивает способность правильно ориентироваться в различных ситуациях, возникающих в процессе расчетов, и наилучшим образом решить задачу.