
- •Основы информационных технологий
- •Оглавление
- •Предисловие
- •Современные информационные технологии
- •1.1 История, современное состояние и перспективы развития вычислительной техники
- •1.2 Элементная база, архитектура, сетевая компоновка, производительность
- •1.3 Понятие информации. Классификация и виды информационных технологий
- •Основные свойства информационных технологий.
- •1 .4 Операционные системы
- •2 Основные программные средства информационных технологий
- •2.1. Программное обеспечение. Текстовые редакторы, их возможности и назначение
- •2.2. Графические редакторы
- •2.3. Электронные таблицы
- •2.4. Сервисные инструментальные программные средства
- •2.5. Системы математических вычислений MatLab
- •2.6 Система подготовки презентаций
- •3 Сетевые технологии и интернет
- •3.1 Классификация компьютерных сетей
- •3.2 Семиуровневая модель структуры протоколов связи
- •2.3. Взаимодействие компьютеров в сети
- •3.3 Организационная структура Internet
- •3.4 Инструментальные средства создания web-сайтов. Основы web-дизайна
- •3.5 Языки разметки гипертекста html и xml
- •3.6 Скриптовые языки программирования
- •4 Системы управления базами данных
- •4.1. Классификация систем управления базами данных
- •4.2 Модели данных
- •4.3 Моделирование баз данных
- •4.4 Архитектура и функциональные возможности субд. Языковые и программные средства субд
- •4.5 Общая характеристика субд ms Access
- •4.6 Основные объекты ms Access
- •4.7 Основы языка sql
- •Контрольные вопросы
- •5 Защита информации при использовании информационных технологий
- •5.1 Основы информационной безопасности
- •5.2. Методы и средства защиты информации
- •5.3 Защита от несанкционированного доступа к данным
- •5.4 Классы безопасности компьютерных систем
- •5.5 Основные аспекты построения системы информационной безопасности
- •6 Математическое моделирование и численные методы
- •6.1 Математические модели и численные методы решения задач в различных предметных областях
- •6.2 Численное дифференцирование и интегрирование
- •6.2.1 Особенность задачи численного дифференцирования
- •6.2.2 Интерполяционная формула Лагранжа для равноотстоящих узлов
- •6.2.3 Численное дифференцирование на основе интерполяционной формулы Лагранжа
- •6.2.4 Численное дифференцирование на основе интерполяционной формулы Ньютона
- •6.2.5 Постановка задачи численного интегрирования
- •6.2.6 Квадратурные формулы Ньютона-Котеса
- •6.2.7 Формула трапеций
- •6.2.8 Формула Симпсона
- •6.2.9 Оценка точности квадратурных формул
- •6.3 Методы решения обыкновенных дифференциальных уравнений
- •6.3.1 Задача Коши и краевая задача
- •6.3.1.1 Классификация уравнений
- •6.3.1.2 Задача Коши
- •6.3.2 Одношаговые методы решения задачи Коши
- •6.3.2.1 Метод Эйлера
- •6.3.2.2 Модифицированный метод Эйлера
- •6.3.2.3 Метод Рунге-Кутта четвертого порядка
- •6.3.2.4 Погрешность решения и выбор шага
- •6.3.3 Многошаговые методы решения задачи Коши
- •6.3.3.1 Многошаговые методы
- •6.3.3.2 Метод Адамса
- •6.3.3.3 Методы прогноза и коррекции (предиктор-корректор)
- •6.3.3.4 Общая характеристика многошаговых методов
- •6.3.4 Краевая задача и метод стрельбы
- •6.3.4.1 Краевая задача
- •6.3.4.2 Метод стрельбы
- •6.3.4.3 Метод стрельбы для линейного дифференциального уравнения
- •6.4 Решение дифференциальных уравнений в чстных производных
- •6.4.1 Краткие теоретические сведения
- •6.4.2 Классификация уравнений по математической форме
- •6.4.3 Основы метода конечных разностей
- •6.4.3.1 Построение сетки
- •6.4.3.2 Аппроксимация уравнения эллиптического типа
- •6.4.3.3 Аппроксимация уравнения гиперболического типа
- •6.4.3.4 Аппроксимация уравнения параболического типа
- •6.4.3.5 Погрешность решения
- •6.4.4 Основы метода конечных элементов
- •6.4.4.1. Формирование сетки
- •6.4.4.2 Конечно-элементная аппроксимация
- •6.4.4.3 Построение решения
- •6.6 Элементы математической статистики
- •6.6.1 Генеральная совокупность. Выборка. Статистические ряды
- •6.6.2 Графическое изображение вариационных рядов. Эмпирическое распределение
- •6.6.3 Средние величины и показатели вариации
- •6.6.4 Средняя арифметическая и ее свойства
- •6.6.5 Дисперсия и ее свойства. Среднее квадратическое отклонение
- •6.6.6 Коэффициент вариации
- •6.6.7 Структурные средние
- •6.6.8 Законы распределения случайных величин
- •6.6.9 Статистические гипотезы
- •7 Методы оптимизации и системы поддержки принятия решений
- •7.1 Характеристика методов решения задач оптимизации
- •7.1.1 Численные методы безусловной оптимизации нулевого порядка
- •7.1.1.1 Основные определения
- •7.1.1.2 Классификация методов
- •7.1.1.3 Общая характеристика методов нулевого порядка
- •7.1.1.4 Метод прямого поиска (метод Хука-Дживса)
- •7.1.1.5 Метод деформируемого многогранника (метод Нелдера—Мида)
- •7.1.1.6 Метод вращающихся координат (метод Розенброка)
- •7.1.1.7 Метод параллельных касательных (метод Пауэлла)
- •7.1.2 Численные методы безусловной оптимизации первого порядка
- •7.1.2.1 Минимизация функций многих переменных. Основные положения
- •7.1.2.2 Метод наискорейшего спуска
- •7.1.2.3 Метод сопряженных градиентов
- •7.1.3 Численные методы безусловной оптимизации второго порядка
- •7.1.3.1 Особенности методов второго порядка
- •7.1.3.2 Метод Ньютона
- •7.2 Линейное программирование
- •7.2.1 Транспортная задача линейного программирования
- •7.2.1.1 Постановка задачи
- •7.2.1.2 Венгерский метод
- •7.2.1.3 Метод потенциалов
- •7.3 Прямые методы условной оптимизации
- •7.3.1 Основные определения
- •7.3.2 Метод проекции градиента
- •7.3.3 Комплексный метод Бокса
- •7.4 Методы штрафных функций
- •7.4.1 Основные определения
- •7.4.2 Методы внутренних штрафных функций
- •7.4.3 Методы внешних штрафных функций
- •7.4.4 Комбинированные алгоритмы штрафных функций
- •7.5 Информационные технологии поддержки принятия решений
- •7.6 Информационные технологии экспертных систем Характеристика и назначение
- •Список литературы
6.2.7 Формула трапеций
При п=1 из
формулы (6.31) имеем:
Тогда по формуле
(6.32) на отрезке
получаем интеграл:
(6.33)
Формула (6.33) дает один из простейших способов вычисления определенного интеграла и называется формулой трапеций. Действительно, при п=1 подынтегральная функция заменяется интерполяционным многочленом Лагранжа первой степени (т.е. линейной функцией), а геометрически это означает, что площадь криволинейной фигуры заменяется площадью трапеции.
Распространяя
формулу (6.33) на все отрезки разбиения,
получим общую формулу трапеций для
отрезка
:
(6.34)
Если аналитическое выражение для подынтегральной функции известно, может быть поставлен вопрос об оценке погрешности численного интегрирования по формуле (6.34) (погрешность метода).
В этом случае имеется ввиду, что
где
‑ остаточный
член квадратурной формулы (6.34). Формулу
остаточного члена получим вначале для
отрезка
.
Имеем:
откуда следует, что естественно рассматривать R как функцию шага h: R=R(h). Заметим, что R(0)=0.
Продифференцируем R(h) по h:
Заметим,
что
.
Далее:
(6.35)
Определим R,
последовательно интегрируяна отрезке
:
откуда с учетом (6.35) имеем:
.
(6.36)
Применяя к (6.36) обобщенную теорему о среднем, получаем:
(6.37)
где
и
зависит отh. Далее
откуда с учетом
(6.37) и обобщенной теоремы о среднем
имеем:
где
Таким образом,
погрешность метода при интегрировании
функции на отрезке
по формуле (6.34) имеет величину:
(6.38)
Из формулы (6.38)
видно. что при
формула (6.34) дает значение интеграла с
избытком, а при
‑ с
недостатком. Можно показать, что при
распространении оценки (6.38) на весь
отрезок интегрирования
получается формула:
Учитывая, что
,
найден следующий окончательный вид для
оценки погрешности метода интегрирования
по формуле трапеций:
(6.39)
где
.
Пример 6.3.
Используем формулу трапеций для n = 2 и n = 4.
Таблица 6.3
xi |
0 |
|
|
|
1 |
f(xi) |
0 |
|
|
|
1 |
6.2.8 Формула Симпсона
При п=2 из формулы (6.31) последовательно имеем (i=0, 1, 2):
Тогда с учетом
(6.32) получим на отрезке
:
т.е.
(6.40)
Геометрически, в соответствии со смыслом интерполяционной формулы Лагранжа при п=2, использование формулы (5.40) означает замену подынтегральной функцииf(x) параболойL2(x), проходящей через точкиMi(xi, yi) (i=0, 1, 2).
Если считать, что
п– четное (n=2m),
то применяя формулу (6.40) последовательно
к каждой паре частичных отрезков(i=1, 2, …, m)
получим:
(6.41)
Формула (6.41) называется формулой Симпсона.
Оценка остаточного члена формулы Симпсона дается формулой:
или
(6.42)
где
.
Как следует из оценки, формула Симпсона,
оказывается точной для полиномов до
третьей степени включительно (т.к. для
этих случаев производная четвертого
порядка равна нулю). Формула Симпсона
обладает повышенной точностью по
сравнению с формулой трапеций. Это
означает, что для достижения той же
точности, что и по формуле трапеций,
ней можно брать меньшее число отрезков
разбиения.
Укажем простой
практический прием позволяющий
прогнозировать требуемое число отрезков
разбиения по заданной точности
.
Пусть задана
предельная допустимая погрешность
интегрирования
Желая иметь
с учетом оценки (6.42) достаточно потребовать
откуда
т. е.
(6.43)
Формула (6.43) позволяет оценить величину шага, необходимую для достижения заданной точности.