Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Konstrukcii / Лекция 2.doc
Скачиваний:
627
Добавлен:
21.02.2016
Размер:
1.07 Mб
Скачать

2. Объемно-планировочные и конструктивные решения промышленных зданий

2.1. Особенности модульной координации, унификации и типизации в промышленном строительстве

Несмотря на разнообразие протекающих в промышленных зданиях технологических процессов, при их проектировании можно применять в большинстве случаев унифицированные планировочные и конструктивные решения, основанные на модульной системе, изложенной ранее [2, с. 22].

Унификация объемно-планировочных и конструктивных решений промышленных зданий имеет две формы – отраслевуюимежотраслевую.Если в прошлом унификация объемно-планировочных и конструктивных решений промышленных зданий проводилась в рамках данной отрасли промышленности, то в настоящее время создаются унифицированные промышленные здания для разных отраслей промышленности. Создание межотраслевой системы унификации объемно-планировочных и конструктивных решений промышленных зданий позволяет сократить число типоразмеров конструкций, снизить стоимость строительства и создать условия для повышения уровня его индустриализации.

Для удобства унификации объем промышленного здания расчленяют на отдельные части или элементы.

Объемно-планировочным элементом или пространственной ячейкойна­зывают часть здания с размерами, равными высоте этажа, пролету и шагу.

Планировочным элементом или ячейкойназывают горизонтальную проекцию объемно-планировочного элемента. Объемно-планировочные и планировочные элементы в зависимости от расположения их в здании могут быть угловые, торцевые, боковые, средние и элементы у температурного шва (рис. 10.1).

Температурным блокомназывают часть здания, состоящую из нескольких объемно-планировочных элементов, расположенных между продольными и поперечными температурными швами или между температурными швами и торцевой или продольной стеной здания.

С момента своего возникновения унификация прошла несколько стадий: линейную, пространственную и объемную.

Линейная унификация позволила установить вначале частично, а затем в комплексе величины отдельных параметров производственных зданий и некоторых их сочетаний. Так были унифицированы пролеты и высоты зданий, шаг колонн, а также нагрузки, действующие на конструкции и грузоподъемность мостовых кранов.

Основные унифицированные параметры и укрупненные модули для одно­этажных промышленных зданий приведены в табл. 10.1, обозначения к ней показаны на рис. 10.2.

Путем пространственной унификации было сокращено число сочетаний параметров по пролетам, высотам и шагам колонн и получены унифицированные объемно-планировочные элементы, применение которых дает возможность создавать множество схем промышленных зданий, различных по габаритам. В зависимости от характеристик технологических процессов унифицированная габаритная схемапромышленного здания может быть использована для разных отраслей промышленности.

Объемная унификация позволила сократить число типоразмеров конструкций и деталей зданий и тем самым повысить серийность и снизить стоимость их изготовления, кроме того, было сокращено число типов зданий, созданы условия для блокирования и внедрения прогрессивных технологических решений.

Рис. 2.1. Членение унифицированной габаритной схемы промышленного здания на температурные блоки и объемно-планировочные элементы

Типы объемно-планировочных элементов: 1 – угловые; 2 – торцовые; 3 – боковые. 4 – средние; 5 – боковые у темпе­ратурного шва; 6 – средние у температурного шва

Таблица 10.1.

Основные параметры и модули для одноэтажных промышленных зданий

Параметры

Модуль,

м

Принятые размеры, м

Пролет

6

6, 12, 18, 24, 30

и более

Шаг колонн

6

6, 12, 18 и более

Высота (от пола до низа несущей конструкции покрытия на опоре):

в бескрановых зданиях

в крановых зданиях

Привязка осей подкрановых балок к осям колонн:

без проходов

с проходами

Привязка стен к разбивочным осям

0,6

0,6

0,25

0,25

0,25

3; 3,6; 4,2; 4,8; 5,4; 6 и более

8,4; 9; 9,6 и более

0,75

1 и более

0; 0,25; 0,5

Для некоторых отраслей промышленности производственные здания выполнялись со сборным железобетонным каркасом и оснащались подвесными или мостовыми кранами грузоподъемностью до 50 т. Для таких отраслей разработка проектов зданий велась на основе применения унифицированных типовых секций(УТС)или унифицированных пролетов(УТП).

Унифицированная типовая секция – объемная часть здания, состоящая из нескольких пролетов по­стоянной высоты. Габариты секции зависят от характера технологического процесса и конструктивного решения здания. Чаще всего такая секция представляет собой температурный блок здания. Поэтому максимальная ее длина равна расстоянию между поперечными температурными швами, а максимальная ширина – предельному расстоянию между продольными температурными швами.

Блокируя унифицированные типовые секции и пролеты между собой, можно получить объемно-планировочное и конструктивное решение промышленного здания требуемой величины с параметрами (пролета, шага, высоты), отвечающими технологическим условиям.

На рис. 10.3 показано объемно-планировочные решение унифицированной типовой секции размером 144x72 м, оборудованной мостовыми кранами, для предприятий машиностроения. В зависимости от применяемых сеток колонн, а также от характера блокирования в здании унифицированные типовые секции разде­ляют на следующие типы (рис. 10.4): I тип – многопролетные, для зданий сплошной застройки, рассчитанные на блокирование секций с любой стороны (см. рис. 10.4, а); II тип – одно-, двух-, многопролетные, блокируемые только вдоль пролетов (для зданий, ширина которых не может быть принята больше, чем ширина одной секции) (см. рис. 10.4, б); III тип – одно- и двухпролетные, пристраиваемые к многопролетным секциям (см. рис. 10.4, в).

Отступления от габаритов унифицированных типовых секций и уни­фицированных типовых пролетов возможны только при соответствующем технико-экономическом обосновании.

Рис. 10.5. Унифицированные объемно-планировочные элементы для промышленных зданий с внутренним отводом воды; оборудованных подвесными кранами

Рис. 10.6. Унифицированные объемно-планировочные элемен­ты для промышленных зданий с внутренним отводом воды, оборудованных мостовыми кранами

На каждую унифицированную типовую секцию и пролет разработаны и изданы массовым тиражом рабочие чертежи. Их использование сокращает объем проектной документации, уменьшает стоимость проектных работ, сокращает сроки проектирования, позволяет поднять качество проектов и применять минимальное число типов конструктивных элементов.

Однако практика проектирования показывает, что применение УТС и УТП в отдельных случаях значительно завышает площади и объемы производственных зданий. Дальнейшее совершенствование архитектурно-строительной унификации идет по пути перехода от межотраслевой к межвидовой, т.е. к нахождению общих объемно-планировочных и конструктивных решений для производственных, сельскохозяйственных и гражданских зданий. В настоящее время ведутся работы над созданием единого общесоюзного каталога унифицированных типовых, стандартных строительных конструкций и изделий. Унифицированные объемно-планировочные элементы разработаны для зданий с подвесными (рис. 10.5) и опорными мостовыми кранами (рис. 10.6), с наружным и внутренним отводом воды, с устройством верхнего света и без него.

Путем взаимосочетания объемно-планировочных элементов можно получить нужные разновидности температурных блоков, а следовательно, и унифицированных габаритных схем промышленных зданий разных габаритов. Как известно, унификация объемно-планировочных и конструктивных решений возможна только при наличии координации размеров конструкций и размеров зданий на основе единой модульной системыс применениемукрупненных модулей, величины которых приводятся в табл. 10.1.

В целях упрощения конструктивного решения одноэтажные промышленные здания проектируют в основном с пролетами одного направления, одинаковой ширины и высоты. Применение в одном здании различных по величине и высоте пролетов возможно только в том случае, если это обусловливается технологическим процессом и необходимостью удовлетворить требования, связанные, например, с блокированием цехов. В тех же случаях для отдельных производств может быть допущено взаимно перпендикулярное расположение пролетов.

Перепады высот в многопролетных зданиях менее 1,2 м обычно не устра­ивают, поскольку они значительно усложняют и удорожают решение здания. Перепады более 1,2 м, необходимые по технологическим условиям, обычно совмещают с температурными швами.

Шаг колонн по крайним и средним рядам принимают на основании технико-экономических соображений с учетом технологических требований. Обычно он составляет 6 или 12 м. Возможен и больший шаг, но кратный укрупненному модулю 6 м, если допускает высота здания и величина расчетных нагрузок.

В зданиях, оборудованных мостовыми кранами, создающими значительные нагрузки, высоту помещения и отметку верха крановой консоли колонн увязывают не только с пролетом, но и с грузоподъемностью крана и шагом колонн каркаса (табл. 10.2).

В многоэтажных промышленных зданиях сетку колонн каркаса назначают в зависимости от нормативной полезной нагрузки на 1 м2перекрытия. Размеры пролетов назначают кратными 3 м, шаг колонн кратным 6 м. Так, при нагрузке до 10000 Н/м2(1000 кг/м2) применяют сетку колонн 9х6 м, а при нагрузках 20000 и 25000 Н/м2(2000 и 2500 кг/м2) – 6x6 м. Применение других сеток колонн возможно лишь при соответствующем технико-экономическом обосновании. Высоты этажей многоэтажных зданий устанавливают кратными укрупненному модулю 0,6 м, но не менее 3 м (рис. 10.7).

Таблица 10.2.

Отметка верха консолей колонны в одноэтажных зданиях со сборным железобетонным каркасом, оборудованных мостовыми кранами

Пролет L, м

Высота помеще­ний И, м

Грузоподъем­ность крана Q, т

Отметка верха крановых консо­лей колонн h, м, при шаге колонна

6 м

12 м

18; 24

8,4

10

5,2

4,6

18; 24

9,6

10; 20

5,8

5,4

18; 24

10.8

10; 20

7

6,6

18; 24; 30

12,6

10; 20; 30

8,5

8,1

18; 24; 30

14,4

10; 20; 30

10,3

9,9

24; 30

16,2

30; 50

11,5

11,1

24; 30

18

30; 50

13,3

12,9

Образование объемно-планировочной структуры многоэтажных про­мышленных зданий достигают аналогично одноэтажным зданиям, т.е. путем блокирования унифицированных объемно-планировочных элементов или секций.

Длину многоэтажного промышленного здания назначают в зависимости от технологического процесса. Объемно-планировочные решения (габаритные схемы) многоэтажных зданий характеризуют число пролетов, их размер, этажность и наличие подвесного транспорта или мостовых кранов (рис. 10.8).

Большое влияние на сокращение числа типоразмеров конструктивных элементов, а также на их унификацию оказывает расположение стен и других конструкций здания по отношению к модульным разбивочным осям.

Унификация промышленных зданий предусматривает определенную систему привязки конструктивных элементов к модульным разбивочным осям. Она позволяет получить идентичное решение конструктивных узлов и возможность взаимозаменяемости конструкций.

Для одноэтажных промышленных зданий установлены привязки колонн крайних и средних рядов, наружных продольных и торцевых стен, колонн в местах устройства температурных швов и в местах перепада высот между пролетами одного или взаимно перпендикулярных направлений (рис. 10.9). Как видно, выбор «нулевой привязки»(т.е. совпадение наружной грани колонн с разбивочной осью) или привязки на расстоянии 250 или 500 мм от наружной грани колонн крайних рядов зависит от грузоподъемности мостовых кранов, шага колонн и высоты здания.

Такая привязка позволяет сократить типоразмеры конструктивных элементов, учитывать действующие нагрузки, устанавливать подстропиль­ные конструкции и устраивать проходы по подкрановым путям.

Геометрические оси торцевых колонн основного каркаса смещают с по­перечных разбивочных осей внутрь здания на 500 мм, внутренние поверхности торцевых стен должны совпадать с поперечными разбивочными осями, т.е. иметь нулевую привязку (рис. 10.9, а). При этом отпадает необходимость в доборных элементах в несущей конструкции ограждающей части покрытия и появляется возможность свободного размещения фахверка (или каркаса) торцевой стены.

Температурные швы, как правило, устраивают на спаренных колоннах. Ось поперечного температурного шва должна совпадать с поперечной разбивочной осью, а геометрические оси колонн смещают от нее на 500 мм (рис. 10.9, б). В продольных температурных швах привязку колонн к продольным разбивочным осям осуществляют по тем же правилам, что и колонн крайнего ряда. Размер вставки, устраиваемой в покрытии, зависит от величины привязки, и его принимают 300, 350, 400, 500, 1000 и 1500 мм (рис. 10.9, г). В зданиях со стальным или смешанным каркасом продольные температурные швы выполняют на одной колонне с устройством скользящих опор.

Рис. 10.9 Привязка конструктивных элементов одноэтажных каркасных промышленных зданий к разбивочным осям

а – колонн и стен; б – колонн в местах температурных швов; в – колонн в местах перепада высот; г – то же, со вставкой в зависимости от толщины стен

Перепад высот между пролетами одного направления или при двух взаимно перпендикулярных пролетах (рис. 10.9, в) устраивают на спаренных колоннах со вставкой с соблюдением правил для колонн крайнего ряда и колонн у торцевых стен. Размеры вставок 300, 350, 400, 500 или 1000 мм ( рис. 10.9, г).

Вставки в 300, 350 и 400 мм не подчиняются правилам унификации, однако значительно упрощают конструктивное решение температурных швов и узлов перепада высот в покрытиях.

Привязку осей подкрановых рельсов к продольным разбивочным осям в зданиях, оборудованных мостовыми кранами при их грузоподъемности до 50 т, принимают 750 мм, а при наличии проходов по подкрановым путям или при грузоподъемности кранов больше 50 т – 1000 мм.

Рис. 10.10 Привязка несущих наружных стен к продольным разбивочным осям

Рис. 10.11. Привязка конструктивных элементов многоэтажных каркасных промышленных зданий к разбивочным осям: а – варианты расположения разбивочных осей; б, в – примеры привязки колонн и самонесущих или навесных стен; г – примеры привязки колонн и стен в местах устройства деформационных швов

В одноэтажных зданиях с несущими наружными стенами их привязку к продольным разбивочным осям осуществляют с таким расчетом, чтобы обеспечить достаточную опору для несущих конструкций покрытия (рис. 10. 10). Привязку несущей торцевой стены при опирании на нее плит покрытия принимают такой же, как для несущей продольной стены. Геометрические оси несущих внутренних стен совмещают с разбивочными осями.

В многоэтажных каркасных промышленных зданиях разбивочные оси колонн средних рядов совмещают с геометрическими (рис. 10.11,а). Исключением могут быть колонны, располагаемые в местах деформационных швов, перепада высот зданий и в тех случаях, когда конструкции опор различны.

Колонны крайних рядов зданий либо имеют «нулевую привязку»(рис. 10.11, б), либо внутреннюю грань колонн размещают на расстоянии а от модульной разбивочной оси (рис. 10.11, в). Величину а принимают равной половине толщины внутренней колонны. Привязка самонесущих или навесных стен к разбивочной оси ведется с учетом привязки колонн крайних рядов и особенностей примыкания стен к колоннам или перекрытиям. В местах устройства деформационных швов привязку колонн и стен осуществляют согласно рис. 10.11, г. В случае перепада высот при установке одинарных колонн используют двойные разбивочные оси.

Модульная координация основных параметров промышленных зданий и стандартная привязка конструктивных элементов к разбивочным осям позволяют унифицировать их объемно-планировочное и конструктивное решение и способствуют дальнейшей индустриализации строительства.

Сказанное относится к промышленным зданиям со сборными железобетонными или стальными каркасами. Возможны и другие способы привязки, если они не усложняют решение здания, не увеличивают число типоразмеров сборных элементов и не повышают стоимость строительства. При применении монолитных железобетонных конструкций или покрытий в виде пространственных систем привязку к разбивочным осям и решение деформационных швов (осадочных и температурных) подвергают проработке.

Соседние файлы в папке Konstrukcii