Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Chapter09

.pdf
Скачиваний:
1793
Добавлен:
21.02.2016
Размер:
748.09 Кб
Скачать

Chapter 9, Solution 85.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Let

Z1 = R1 ,

 

 

 

 

Z2

= R 2 +

 

 

1

 

 

 

, Z3 = R 3 , and Z4 = R 4 ||

1

.

 

 

 

 

jωC2

 

jωC4

 

Z4 =

 

 

 

 

 

 

R 4

 

 

 

 

 

=

 

 

 

 

 

- jR 4

 

 

 

 

 

 

 

 

 

 

jωR 4 C4 +1

ωR 4C4 j

 

 

 

 

 

 

Since

Z4 =

Z3

 

 

Z2

 

 

 

Z1Z4

= Z2 Z3 ,

 

 

Z1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- jR

4

R

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

j

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

R

3

R

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ωR 4C4 j

 

ωC2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- jR 4 R1 (ωR 4C4 + j)

= R

3

R

2

 

jR 3

 

 

 

 

 

 

 

 

 

ωC2

 

 

 

ω2 R 42 C42 +1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Equating the real and imaginary components,

 

 

 

 

 

 

 

 

 

 

R1R 4

 

 

 

 

=

R

2

R

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ω2 R 42C42 +

1

 

 

(1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ωR

R 2C

4

 

 

 

 

 

 

 

 

R

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

4

 

 

 

 

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ω2 R 42C42 +

1

 

ωC2

 

 

 

(2)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dividing (1) by (2),

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

= ωR 2C2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ωR 4C4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ω2 =

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R 2C2 R 4 C4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ω= 2πf =

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R 2C2 R 4C4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f = 2π R2 R4C2C4

 

 

 

 

 

 

 

 

 

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 9, Problem 86.

The circuit shown in Fig. 9.86 is used in a television receiver. What is the total impedance of this circuit?

Figure 9.86

For Prob. 9.86.

Chapter 9, Solution 86.

Y =

1

1

 

1

 

 

 

 

 

+

 

+

 

 

 

 

240

j95

- j84

 

 

Y = 4.1667 ×10-3

j0.01053 + j0.0119

Z =

 

1

=

1000

 

=

1000

 

Y

 

4.1667 + j1.37

4.3861 18.2°

Z = 228 -18.2°

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 9, Problem 87.

The network in Fig. 9.87 is part of the schematic describing an industrial electronic sensing device. What is the total impedance of the circuit at 2 kHz?

Figure 9.87

For Prob. 9.87.

Chapter 9, Solution 87.

 

 

Z1

1

 

 

- j

= 50 +

 

= 50

+

 

jωC

(2π)(2 ×103 )(2 ×10-6 )

Z1

= 50 j39.79

 

 

Z2 = 80 + jωL = 80 + j(2π)(2 ×103 )(10 ×10-3 )

Z2 = 80 + j125.66

Z3 =100

1

=

 

1

+

1

+

1

 

 

 

 

 

Z

 

Z1

Z2

Z3

 

 

 

 

 

 

 

 

 

 

 

 

 

1

=

 

1

 

+

 

 

1

 

+

 

1

 

Z

100

 

50 j39.79

80

+ j125.66

 

 

 

 

1

=10-3 (10 +12.24 + j9.745 +3.605 j5.663)

Z

= (25.85 + j4.082) ×10-3

 

 

 

 

 

= 26.17 ×10-3 8.97°

Z = 38.21 -8.97°

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 9, Problem 88.

A series audio circuit is shown in Fig. 9.88.

(a)What is the impedance of the circuit?

(b)If the frequency were halved, what would be the impedance of the circuit?

Figure 9.88

For Prob. 9.88.

Chapter 9, Solution 88.

(a) Z = -j20 + j30 +120 j20

Z = 120 – j10

11

(b)If the frequency were halved, ωC = 2πf C would cause the capacitive impedance to double, while ωL = 2πf L would cause the inductive

impedance to halve. Thus,

Z = -j40 + j15 +120 j40

Z = 120 – j65

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 9, Problem 89.

An industrial load is modeled as a series combination of a capacitance and a resistance as shown in Fig. 9.89. Calculate the value of an inductance L across the series combination so that the net impedance is resistive at a frequency of 50 kHz.

Figure 9.89

For Prob. 9.89.

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 9, Solution 89.

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

Zin = jωL || R +

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

jωC

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

L

 

 

 

 

 

 

 

 

jωL R +

 

 

 

 

 

 

 

 

 

+ jωL R

 

 

 

 

 

 

 

 

 

Zin =

 

 

 

 

jωC

=

 

 

C

 

 

R + jωL +

 

 

1

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

jωC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R + j ωL ωC

L

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

+ jωL R

R j ωL

 

 

 

 

 

 

 

 

Zin =

C

 

 

 

 

 

 

 

 

 

 

ωC

 

 

 

 

 

 

 

 

 

 

1

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

2

 

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ωL

ωC

 

 

 

 

 

 

 

To have a resistive impedance, Im(Zin ) = 0 . Hence,

 

 

 

L

 

 

1

 

 

ωL R

2

 

 

 

 

 

 

= 0

 

 

 

 

C ωL

ωC

ωR 2C L

1

 

 

 

 

ωC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ω2 R 2 C2 2 LC 1

L = ω2 R 2C2 +1

ω2 C

Now we can solve for L.

L= R 2C +1/(ω2C)

=(2002)(50x10–9) + 1/((2πx50,000)2(50x10–9)

=2x10–3 + 0.2026x10–3 = 2.203 mH.

Checking, converting the series resistor and capacitor into a parallel combination, gives 220.3Ω in parallel with -j691.9Ω. The value of the parallel inductance is ωL = 2πx50,000x2.203x10–3 = 692.1Ω which we need to have if we are to cancel the effect of the capacitance. The answer checks.

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 9, Problem 90.

An industrial coil is modeled as a series combination of an inductance L and resistance R, as shown in Fig. 9.90. Since an ac voltmeter measures only the magnitude of a sinusoid, the following measurements are taken at 60 Hz when the circuit operates in the steady state:

Vs = 145 V, V1 = 50 V, Vo = 110 V

Use these measurements to determine the values of L and R.

Figure 9.90

For Prob. 9.90.

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 9, Solution 90.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Let

Vs

=145 0°,

 

 

 

 

 

 

 

X = ωL =(2π)(60) L = 377 L

 

I =

 

 

 

 

 

 

 

Vs

 

 

 

 

 

=

 

 

 

145 0°

 

 

 

80 + R + jX

 

 

80 + R + jX

 

V = 80I =

 

(80)(145)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

80 + R

+ jX

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

50 =

 

(80)(145)

 

 

 

 

 

 

 

 

 

 

 

 

 

80 + R + jX

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1)

 

V

= (R + jX) I =

(R + jX)(145 0°)

 

 

 

 

 

 

 

 

o

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

80 + R + jX

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

110 =

 

 

(R + jX)(145)

 

 

 

 

 

 

 

 

 

80 + R + jX

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(2)

From (1) and (2),

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

50

 

 

=

 

 

 

80

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

110

 

 

 

R + jX

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

11

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R + jX

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= (80) 5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R 2 + X2

= 30976

 

 

 

 

 

 

 

(3)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From (1),

 

 

 

 

 

 

 

 

 

 

 

 

 

(80)(145)

 

 

 

 

 

80 + R + jX

 

=

 

= 232

 

 

 

 

 

 

 

 

 

 

 

 

 

 

50

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6400 +160R + R 2 + X2

= 53824

 

 

160R + R 2 + X2

= 47424

(4)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Subtracting (3) from (4),

 

 

 

 

 

 

 

 

 

160R =16448

R = 102.8

From (3),

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X2

 

= 30976 10568 = 20408

 

X =142.86 = 377L L = 0.3789 H

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 9, Problem 91.

Figure 9.91 shows a parallel combination of an inductance and a resistance. If it is desired to connect a capacitor in series with the parallel combination such that the net impedance is resistive at 10 MHz, what is the required value of C?

Figure 9.91

For Prob. 9.91.

Chapter 9, Solution 91.

 

1

 

 

 

 

Zin =

 

 

+ R || jωL

jωC

Zin =

 

- j

+

jωLR

 

ωC

R + jωL

 

=

 

- j

+ ω2 L2 R + jωLR 2

 

ωC

 

 

R 2 2 L2

To have a resistive impedance, Im(Zin ) = 0 .

Hence,

-1

 

 

 

 

 

ωLR 2

 

 

 

+

 

 

 

 

= 0

 

ωC

R 2 2 L2

 

1

 

=

 

 

ωLR 2

 

 

ωC

 

 

R 2 2 L2

 

 

 

 

 

C =

 

R 2 2 L2

 

 

 

 

ω2 LR 2

where ω= 2πf = 2π×107

C =

 

9 ×104 +(4π2 ×1014 )(400 ×1012 )

 

 

(4π2 ×1014 )(20 ×106 )(9 ×104 )

C =

9

 

+16π2

 

 

 

 

nF

 

 

 

72π2

C = 235 pF

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 9, Problem 92.

A transmission line has a series impedance of Z = 100 75 o and a shunt admittance of Y = 450 48 o µS . Find: (a) the characteristic impedance Z o = Z Y

(b) the propagation constant γ = ZY .

Chapter 9, Solution 92.

(a)

Zo =

Z

=

100 75o

= 471.4 13.5o

 

 

Y

 

450 48o x106

 

(b)

γ =

ZY =

100 75o x450 48o x106 = 0.2121 61.5o

Chapter 9, Problem 93.

A power transmission system is modeled as shown in Fig. 9.92. Given the following;

Source voltage

 

 

 

V s = 115 0 o V,

Source impedance

 

 

 

Z s = 1 + j0.5 ,

Line impedance

 

 

 

Z l = 0.4 + j0.3 ,

Load impedance

 

 

 

Z L = 23.2 + j18.9 ,

find the load current

 

 

 

I L

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.92

For Prob. 9.93.

Chapter 9, Solution 93.

Z = Zs + 2 Zl + ZL

Z = (1+0.8 + 23.2) + j(0.5 +0.6 +18.9)

Z = 25 + j20

IL =

VS

=

115 0°

 

32.02 38.66°

 

Z

IL =

3.592 -38.66° A

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]