Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Автоматизация ответы..docx
Скачиваний:
154
Добавлен:
20.02.2016
Размер:
5.25 Mб
Скачать

72. В чем суть колориметрического метода определения концентрации.

КОЛОРИМЕТРИЧЕСКИЙ АНАЛИЗ– визуальный метод фотометрического анализа, основанный на установлении концентрации растворимого окрашенного соединения по интенсивности или оттенку его окраски. Чаще всего такое соединение образуется в результате взаимодействия определяемого компонента с подходящим реагентом. После завершения реакции цвет полученного раствора сравнивают с цветом серии стандартных растворов с известными концентрациями того же соединения. Часто пользуются визуальными колориметрами. В колориметрах погружения наблюдатель уравнивает окраски исследуемого и стандартного растворов, меняя толщину их слоев. Для этого растворы помещают в цилиндры с прозрачным дном, через которое проходит свет от источника; в них погружают монолитные стеклянные цилиндры, способные перемещаться в вертикальном направлении.

Поскольку, по закону Бэра, концентрация раствора обратно пропорциональна толщине его слоя, можно вычислить концентрацию окрашенного соединения в исследуемом растворе, зная его концентрацию в стандартном растворе. В визуальных колориметрах диафрагменного типа для уравнивания окрасок растворителя и исследуемого раствора их рассматривают через светофильтр и изменяют отверстие диафрагмы. Количественный анализ проводят по градуировочной кривой в координатах размер диафрагмы - концентрация вещества, построенной с помощью серии стандартных растворов для данного светофильтра и данной толщины слоя.

Колориметрический анализ отличается простотой и быстротой проведения эксперимента, но по сравнению со спектрофотометрией не очень точен. Нижние границы определяемых концентраций варьируют от 10-3 до 10-8 моль/л.

73. Рефрактометрический метод анализа жидких сред основан на использовании зависимости показателя преломления бинарной смеси от соотношения ее компонентов.

Наибольшее распространение в промышленной практике по­лучили автоматические рефрактометры, использующие метод разностной призмы. Кюветный преобразователь такого рефракто­метра состоит из двух или трех полых призм, одна из которых заполнена эталонной (сравнительной) жидкостью со средним значением показателя преломления яср.

Кювета дифференциальная, состоящая из двух камер, автоматически обеспе­чивает температурную компенсацию результатов измерения, если сравнительная (эталонная) жидкость имеет тот же температурный коэффициент показателя преломления, что и контролируемая.

Преимущество автоматических рефрактометров, основанных на принципе полного внутреннего отражения, заключается в воз­можности контроля концентрации непрозрачных жидкостей, на­пример, нефтепродуктов, однако чувствительность их меньше, чем дифференциальных рефрактометров. Диапазон измерения рефрактометра зависит от параметров оптической и следящей систем.

74. Определить кислотность или щелочность среды можно с помощью нехитрых химических опытов, т.е. использовать химические индикаторы. Однако, в рамках сложных производственных процессов провести такие эксперименты зачастую не представляется возможным. Кроме того, большинство производственных циклов контролируется автоматическими или автоматизированными системами управления, отвечающими за исправность оборудования и безопасность персонала. Все это выдвигает определенные требования к типу представления и оперативности получения данных о состоянии технологического процесса, возможности их незамедлительной обработки посредством электронных систем и принятия соответствующих решений.

В этих целях применяются ph метры. Эти приборы используют потенциометрический принцип измерения реакции среды, то есть измеряют электродвижущую силу, создаваемую электрохимической частью ph метра. Электрохимическая часть электрода представляет собой стеклянный ph-электрод и электрод сравнения (хлорсеребряный электрод), которые погружаются в раствор, ph-уровень которого требуется измерить. Основным параметром ph-метров является точность определения значения ph. Оптимальная точность прибора 0,01. Кроме того, ph метры в комплекте с соответствующими электродами способны измерять окислительно-восстановительный потенциал (это не относится к карманным и бюджетным ph метрам). Использование микропроцессорных систем позволяет проводить высококачественный и оперативный анализ, а также хранить параметры буферных растворов (применяются для оценки точности и позволяют избежать ошибок при измерении) и сохранять результаты измерений и наблюдений.

К промышленным ph метрам стандартами государственной системы промышленных приборов и средств автоматизации предъявляются особые требования. К таким требованиям относится устойчивость к механическим, климатическим, электромагнитным и другим воздействиям, а также надежность прибора и способность его формировать электрические сигналы для связи с контроллерами автоматических систем управления. Некоторые ph-метры промышленного исполнения способны формировать цифровые сигналы и использовать различные протоколы для передачи данных и взаимодействия с контроллером и другими устройствами в системе управления. К слову, в промышленных ph-метрах в качестве электрохимической ячейки используется ph–датчик, в котором ph-электроды и сравнительные электроды выступают лишь некоторыми составными элементами.

75. Поскольку абсолютную величину электродного потенциала практически определить нельзя, измеряют его относительное зна­чение, для чего составляют гальванический элемент из измери­тельного (индикаторного) электрода, анализируемой среды и вспо­могательного (в литературе встречается термин «сравнительный» электрод) электрода. Схематическое изображение такого эле­мента: измерительный электрод —■ анализируемая среда — вспомогательный электрод.

В отличие от индикаторного электрода, потенциал которого функционально связан с активностью контролируемых ионов, потенциал вспомогательного электрода должен всегда оставаться постоянным. Такой гальванический элемент называется в даль­нейшем измерительной ячейкой для потенциометрических изме­рений.

76. Хлорсеребряный электрод изготовляют из серебряного стержня, на поверхности которого осаждают слой малорастворимой соли А§С1. При погружении в раствор, содержащий ионы С1, электрод приобретает потенциал, величина которого является функцией активности ионов хлора. Наиболее распространены хлорсеребря- ные электроды с 3,5 н. и с насыщенным раствором КС1.Промышленный хлорсеребряный электрод (рис. 26.1) имеет пластмассовый корпус 1, в котором находится серебряный кон­такт 2. Полость вокруг контакта заполнена кристаллическим хлористым серебром. В качестве препятствия для диффузии хло­ристого серебра из электрода в раствор применена пористая пере­городка в виде прокладки 3 из фильтровальной бумаги, зажатой капроновой шайбой 4. Хлорсеребряный электрод укреплен в дне сосуда для раствора хлористого калия. Во избежание высыхания электрода и попадания в него воздуха во время хранения и транс­портирования в отверстие втулки 5, прижимающей шайбы 4, залит раствор хлористого калия и вставлена резиновая пробка 6. Электрод снабжен колпачком 7, в который также залит раствор хлористого калия.Каломельный электрод (рис. 26.2) представляет собой сосуд 2, на дне которого находится слой 5 чистой металлической ртути, покрытой слоем 4 малорастворимой пасты каломели (Н§2С12).Остальная часть сосуда заполнена раствором 3 хлористого калия. Для контакта с /У" N4 ртутью в дно сосуда впаяна платиновая [/ - у проволока 6. Равновесный потенциал этого электрода зависит только от активности ионов хлора в растворе, которая опреде­ляется главным образом концентрацией хорошо растворимой соли КС1. Чаще всего в практике потен- циометрических измерений используют каломельные электроды с насыщенным раствором хлористого калия, так как в этом слу­чае легко поддерживать постоянную концентрацию ионов хлора.

Известно большое число конструкций каломельных электродов, характеризующихся различными технологическими и эксплуата­ционными параметрами. Во всех конструкциях каломельных вспомогательных электродов контакт их с контролируемым рас­твором осуществляется через раствор хлористого калия.

77.Ионное произведение воды.В чем суть.Методы определения рН-среды

Ио́нное произведе́ние воды́ — произведение концентраций ионов водорода Н+ и ионов гидроксила OH− в воде или в водных растворах, константа автопротолиза воды. Водоро́дный показа́тель, pH— мера активности (в очень разбавленных растворах она эквивалентна концентрации) ионов водорода в растворе, и количественно выражающая его кислотность, вычисляется как отрицательный (взятый с обратным знаком) десятичный логарифм активности водородных ионов. Кислотность среды имеет важное значение для множества химических процессов, и возможность протекания или результат той или иной реакции часто зависит от pH среды. Для поддержания определённого значения pH в реакционной системе при проведении лабораторных исследований или на производстве применяют буферные растворы, которые позволяют сохранять практически постоянное значение pH при разбавлении или при добавлении в раствор небольших количеств кислоты или щёлочи.

Для определения значения pH растворов широко используют несколько методик. Водородный показатель можно приблизительно оценивать с помощью индикаторов, точно измерять pH-метром или определять аналитически путём, проведением кислотно-основного титрования.

pH-метр — прибор для измерения водородного показателя (показателя pH), характеризующего концентрацию ионов водорода в растворах. Действие pH-метра основано на измерении величины ЭДС электродной системы, которая пропорциональна активности ионов водорода в растворе — pH (водородному показателю). Измерительная схема по сути представляет собой вольтметр, проградуированный непосредственно в единицах pH для конкретной электродной системы (обычно измерительный электрод — стеклянный, вспомогательный — хлоросеребряный).

78.Разделение приборов для измерения плотности жидкостей. Плотность. Единицы измерения

Пло́тность — скалярная физическая величина, определяемая как отношение массы тела к занимаемому этим телом объёму. Исходя из определения плотности, её размерность кг/м³ в системе СИ и в г/см³ в системе СГС.

Для измерения плотности используются:

-Пикнометр — прибор для измерения истинной плотности

-Ареометр (денсиметр, плотномер) — измеритель плотности жидкостей.

-Бурик Качинского и бур Зайдельмана — приборы для измерения плотности почвы.

-Вибрационный плотномер — прибор для измерения плотности жидкости и газа под давлением.

Вибрационный плотномер — прибор, предназначенный для преобразования значения плотности контролируемой среды в аналоговый или цифровой электрический сигнал для передачи его в системы телеметрии или автоматики и/или отображения значения плотности на цифровом табло.

Вибрационный плотномер содержит колебательную систему, обычно в виде камертона, возбуждаемую на резонансной частоте с помощью пьезоэлектрических преобразователей. Резонансная частота колебательной системы зависит от плотности окружающей камертон среды. Используются для измерения плотности жидкости и газов под давлением.Известны вибрационные плотномеры проточные, предназначенные для контроля плотности движущейся в трубопроводе среды, и погружные, для контроля плотности среды в резервуарах.

79.Суть психометрического метода.Абсолютная и относительная влажность

Влажность — показатель содержания воды в физических телах или средах. Для измерения влажности используются различные единицы, часто внесистемные.

Относительная влажность — отношение парциального давления паров воды в газе (в первую очередь, в воздухе) к равновесному давлению насыщенных паров при данной температуре. Обозначается греческой буквой φ.

Абсолютная влажность — количество влаги, содержащейся в одном кубическом метре воздуха. Из-за малой величины обычно измеряют в г/м³.

Одним из основных методов для измерения относительной влажности воздуха является психрометрический. Измерение относительной влажности воздуха этим способом осуществляется по данным с психрометра - прибора, состоящего из двух термометров с интервалом 0,2°С. Ёмкость одного из термометров, плотно обертывается тонкой тканью, конец которой опускается в стаканчик с дистиллированной водой. С поверхности ёмкости "мокрого" термометра происходит испарение воды, на которое расходуется тепло. Сухой термометр показывает температуру окружающего воздуха, а мокрый - температуру поверхности ёмкости, зависящую от интенсивности испарения воды. Чем ниже влажность, тем интенсивнее будет происходить испарение и следовательно, тем ниже будут показания мокрого термометра.

80.Метод точки росы.Абсолютная и относительная влажность

Влажность — показатель содержания воды в физических телах или средах. Для измерения влажности используются различные единицы, часто внесистемные.

Относительная влажность — отношение парциального давления паров воды в газе (в первую очередь, в воздухе) к равновесному давлению насыщенных паров при данной температуре. Обозначается греческой буквой φ.

Абсолютная влажность — количество влаги, содержащейся в одном кубическом метре воздуха. Из-за малой величины обычно измеряют в г/м³.

Метод точки росы, или конденсационный метод, основан на принципе измерения температуры конденсации влаги на охлаждаемой поверхности прибора. После того как водяные пары достигнут температуры насыщения, из газа выделяется влага и на зеркале выпадает роса, зеркало мутнеет, а при низких температурах покрывается инеем. По температуре и давлению, при которых выпадает роса, определяют содержание влаги в газе.