- •10. За заданим двовимірним статистичним розподілом вибірки (X,y) з генеральної сукупності з ознаками потрібно:
- •10. За заданим двовимірним статистичним розподілом вибірки (X,y) з генеральної сукупності з ознаками потрібно:
- •7. Знайти математичне сподівання, дисперсію та середньоквадратичне відхилення дискретної випадкової величини, такої що задана законом розподілу:
- •8. Відомі математичні сподівання а та середньоквадратичне відхилення нормально розподіленої випадкової величини х. Знайти ймовірність попадання заданої величини в даний інтервал (, )
- •9. За наведеними результатами 50-ти вимірювань значень деякої неперервної випадкової величини х потрібно:
- •10. За заданим двовимірним статистичним розподілом вибірки (X,y) з генеральної сукупності з ознаками потрібно:
- •10. За заданим двовимірним статистичним розподілом вибірки (X,y) з генеральної сукупності з ознаками потрібно:
- •10. За заданим двовимірним статистичним розподілом вибірки (X,y) з генеральної сукупності з ознаками потрібно:
- •10. За заданим двовимірним статистичним розподілом вибірки (X,y) з генеральної сукупності з ознаками потрібно:
- •1. Знайти ймовірність того, що при підкиданні 2-х гральних кісток на них випадає однакова кількість очок.
- •10. За заданим двовимірним статистичним розподілом вибірки (X,y) з генеральної сукупності з ознаками потрібно:
- •10. За заданим двовимірним статистичним розподілом вибірки (X,y) з генеральної сукупності з ознаками потрібно:
- •10. За заданим двовимірним статистичним розподілом вибірки (X,y) з генеральної сукупності з ознаками потрібно:
- •10. За заданим двовимірним статистичним розподілом вибірки (X,y) з генеральної сукупності з ознаками потрібно:
- •10. За заданим двовимірним статистичним розподілом вибірки (X,y) з генеральної сукупності з ознаками потрібно:
- •10. За заданим двовимірним статистичним розподілом вибірки (X,y) з генеральної сукупності з ознаками потрібно:
- •10. За заданим двовимірним статистичним розподілом вибірки (X,y) з генеральної сукупності з ознаками потрібно:
- •10. За заданим двовимірним статистичним розподілом вибірки (X,y) з генеральної сукупності з ознаками потрібно:
- •10. За заданим двовимірним статистичним розподілом вибірки (X,y) з генеральної сукупності з ознаками потрібно:
- •10. За заданим двовимірним статистичним розподілом вибірки (X,y) з генеральної сукупності з ознаками потрібно:
- •10. За заданим двовимірним статистичним розподілом вибірки (X,y) з генеральної сукупності з ознаками потрібно:
- •10. За заданим двовимірним статистичним розподілом вибірки (X,y) з генеральної сукупності з ознаками потрібно:
- •10. За заданим двовимірним статистичним розподілом вибірки (X,y) з генеральної сукупності з ознаками потрібно:
- •10. За заданим двовимірним статистичним розподілом вибірки (X,y) з генеральної сукупності з ознаками потрібно:
- •1. Знайти ймовірність того, що при підкиданні 2-х гральних кісток на них випадає однакова кількість очок.
- •10. За заданим двовимірним статистичним розподілом вибірки (X,y) з генеральної сукупності з ознаками потрібно:
- •10. За заданим двовимірним статистичним розподілом вибірки (X,y) з генеральної сукупності з ознаками потрібно:
- •10. За заданим двовимірним статистичним розподілом вибірки (X,y) з генеральної сукупності з ознаками потрібно:
- •10. За заданим двовимірним статистичним розподілом вибірки (X,y) з генеральної сукупності з ознаками потрібно:
- •10. За заданим двовимірним статистичним розподілом вибірки (X,y) з генеральної сукупності з ознаками потрібно:
- •10. За заданим двовимірним статистичним розподілом вибірки (X,y) з генеральної сукупності з ознаками потрібно:
- •10. За заданим двовимірним статистичним розподілом вибірки (X,y) з генеральної сукупності з ознаками потрібно:
- •10. За заданим двовимірним статистичним розподілом вибірки (X,y) з генеральної сукупності з ознаками потрібно:
- •10. За заданим двовимірним статистичним розподілом вибірки (X,y) з генеральної сукупності з ознаками потрібно:
10. За заданим двовимірним статистичним розподілом вибірки (X,y) з генеральної сукупності з ознаками потрібно:
а) знайти рівняння вибіркових прямих ліній регресії на та на ;
б) побудувати графіки одержаних функцій регресії;
в) побудувати довірчий інтервал для вибіркового коефіцієнту кореляції та перевірити гіпотезу про його вагомість;
X\Y |
4 |
8 |
12 |
16 |
20 |
24 |
nx |
10 |
2 |
5 |
- |
- |
- |
- |
7 |
20 |
- |
6 |
8 |
4 |
- |
- |
18 |
30 |
- |
8 |
26 |
14 |
5 |
- |
53 |
40 |
- |
- |
15 |
20 |
8 |
2 |
45 |
50 |
- |
- |
3 |
9 |
4 |
1 |
17 |
ny |
2 |
19 |
52 |
47 |
17 |
3 |
n=140 |
Варіант 25
1. В кімнаті знаходиться 9 людей. Яка ймовірність того, що принаймні два із них народилися в один і той же місяць.( Прийміть, що ймовірність народження людини в різні місяці року рівна).
-
При посадці до вагона заходили 30 пасажирів, 20 із яких студенти. Яка ймовірність того, що перші два пасажири, що зайдуть до вагона – студенти?
-
Залізничні каси працюють 80% часу, а 20 % знаходяться на перерві. Знайти ймовірність того, що із 5 кас працюють 3.
-
40% пасажирських вагонів є плацкартними, 50% - купейними, 10% - м’якими. Серед провідників плацкартних вагонів 30% чоловіків, серед провідників купейних вагонів 40% чоловіків, серед провідників м’яких вагонів 20% чоловіків. Яка ймовірність того, що провідник, обраний випадково – чоловічої статі?
5. Пристрій складається з 2000 елементів, які працюють незалежно один від одного. Ймовірність відмови будь-якого елемента протягом часу Т дорівнює 0,001. Знайти ймовірність того, що за час Т відмовлять 4 елемента.
6. Неперервна випадкова величина Х задана своєю щільністю розподілу ймовірностей f(x). Знайти коефіцієнт а, функцію розподілу F(x), побудувати графіки f(x), F(x). Знайти математичне сподівання, дисперсію та середньоквадратичне відхилення цієї величини. Знайти ймовірность того, що Х прийме занчення з інтервалу (; ).
7. Знайти математичне сподівання, дисперсію та середньоквадратичне відхилення дискретної випадкової величини, такої що задана законом розподілу:
Хі |
-5,2 |
-4,0 |
-3,5 |
-2,7 |
-1,9 |
Рі |
0,10 |
0,13 |
0,19 |
|
0,38 |
8. Відомі математичні сподівання а та середньоквадратичне відхилення нормально розподіленої випадкової величини Х. Знайти ймовірність попадання заданої величини в даний інтервал (, )
9. За наведеними результатами 50-ти вимірювань значень деякої неперервної випадкової величини Х потрібно:
а) побудувати інтервальний статистичний розподіл вибірки;
б) побудувати гістограму частот та емпіричну функцію розподілу;
в) знайти точкові оцінки математичного сподівання та дисперсії випадкової величини Х;
23 |
21 |
27 |
14 |
26 |
21 |
23 |
33 |
17 |
40 |
33 |
25 |
23 |
16 |
10 |
15 |
15 |
12 |
24 |
22 |
29 |
21 |
23 |
27 |
20 |
24 |
14 |
10 |
16 |
23 |
25 |
29 |
21 |
22 |
26 |
8 |
9 |
19 |
22 |
16 |
19 |
27 |
20 |
33 |
26 |
18 |
28 |
10 |
23 |
25 |