Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Парниковый эффект

.docx
Скачиваний:
69
Добавлен:
19.02.2016
Размер:
32.37 Кб
Скачать

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ ГРОДНЕНСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ

Реферат на тему:

«Парниковый эффект.

Выбросы технологического тепла и влаги, шумовое и электромагнитное загрязнение окружающей среды»

Подготовила:

студентка 5 курса 10 гр. МДФ

Томчук А. Н.

2013

Введение

Охрана окружающей природной среды и рациональное использование естественныхресурсов - одна из актуальных глобальных проблем современности. Ее решениенеразрывно связано с борьбой за мир на Земле, за предотвращение ядернойкатастрофы, разоружение, мирное сосуществование и взаимовыгодноесотрудничество государств.

Все мы в последние десятилетия наблюдаем резкое повышение температуры, когдазимой в место отрицательных температур, мы месяцами наблюдаем оттепели до 5 –8 градусов тепла, а в летние месяцы – засухи и суховеи, иссушающие почвуземли и ведущие к ее эрозии. Почему это происходит?

Ученые утверждают, что причиной, прежде всего, является губительнаядеятельность человечества, приводящая к глобальному изменению климата Земли.Сжигание топлива в электростанциях, резкое увеличение количества отходов отпроизводственной деятельности человека, увеличение автомобильного транспортаи как следствие увеличение выбросов углекислого газа в атмосферу Земли прирезком сокращении лесопарковой зоны, привело к возникновению так называемогопарникового эффекта Земли.

Парниковый эффект

Парнико́вый эффе́кт — повышение температуры нижних слоёв атмосферы планеты по сравнению с эффективной температурой, то есть температурой теплового излучения планеты, наблюдаемого из космоса.

История исследований

Идея о механизме парникового эффекта была впервые изложена в 1827 году Жозефом Фурье в статье «Записка о температурах земного шара и других планет», в которой он рассматривал различные механизмы формирования климата Земли, при этом он рассматривал как факторы, влияющие на общий тепловой баланс Земли (нагрев солнечным излучением, охлаждение за счёт лучеиспускания, внутреннее тепло Земли), так и факторы, влияющие на теплоперенос и температуры климатических поясов (теплопроводность, атмосферная и океаническая циркуляция)[1][2].

При рассмотрении влияния атмосферы на радиационный баланс Фурье проанализировал опыт М. де Соссюра с зачернённым изнутри сосудом, накрытым стеклом. Де Соссюр измерял разность температур внутри и снаружи такого сосуда, выставленного на прямой солнечный свет. Фурье объяснил повышение температуры внутри такого «мини-парника» по сравнению с внешней температурой действием двух факторов: блокированием конвективного теплопереноса (стекло предотвращает отток нагретого воздуха изнутри и приток прохладного снаружи) и различной прозрачностью стекла в видимом и инфракрасном диапазоне.

Именно последний фактор и получил в позднейшей литературе название парникового эффекта — поглощая видимый свет, поверхность нагревается и испускает тепловые (инфракрасные) лучи; поскольку стекло прозрачно для видимого света и почти непрозрачно для теплового излучения, то накопление тепла ведёт к такому росту температуры, при котором количество проходящих через стекло тепловых лучей достаточно для установления теплового равновесия.

Фурье постулировал, что оптические свойства атмосферы Земли аналогичны оптическим свойствам стекла, то есть её прозрачность в инфракрасном диапазоне ниже, чем прозрачность в диапазоне оптическом, однако количественные данные по поглощению атмосферы в инфракрасном диапазоне долгое время являлись предметом дискуссий.

В 1896 году Сванте Аррениус, шведский физико-химик, для количественного определения поглощении атмосферой Земли теплового излучения проанализировал данные Сэмюэла Лэнгли о болометрической светимости Луны в инфракрасном диапазоне[3]. Аррениус сравнил данные, полученные Лэнгли при разных высотах Луны над горизонтом (то есть при различных величинах пути излучения Луны через атмосферу), с расчетным спектром её теплового излучения и рассчитал как коэффициенты поглощения инфракрасного излучения водяным паром и углекислым газом в атмосфере, так и изменения температуры Земли при вариациях концентрации углекислого газа. Аррениус также выдвинул гипотезу, что снижение концентрации в атмосфере углекислого газа может являться одной из причин возникновения ледниковых периодов[4].

Количественное определение парникового эффекта

Суммарная энергия солнечного излучения, поглощаемого в единицу времени планетой радиусом и сферическим альбедо равна:

,

где — солнечная постоянная, и — расстояние до Солнца.

В соответствии с законом Стефана — Больцмана равновесное тепловое излучение планеты с радиусом , то есть площадью излучающей поверхности :

,

где — эффективная температура планеты.

Количественно величина парникового эффекта определяется как разница между средней приповерхностной температурой атмосферы планеты и её эффективной температурой . Парниковый эффект существенен для планет с плотными атмосферами, содержащими газы, поглощающие излучение в инфракрасной области спектра, и пропорционален плотности атмосферы. Следствием парникового эффекта является также сглаживание температурных контрастов как между полярными и экваториальными зонами планеты, так и между дневными и ночными температурами.

Природа парникового эффекта

Парниковый эффект атмосфер обусловлен их различной прозрачностью в видимом и дальнем инфракрасном диапазонах. На диапазон длин волн 400—​1500 нм в видимом свете и ближнем инфракрасном диапазоне приходится 75 % энергии солнечного излучения, большинство газов не поглощают в этом диапазоне; рэлеевское рассеяние в газах и рассеяние на атмосферных аэрозолях не препятствуют проникновению излучения этих длин волн в глубины атмосфер и достижению поверхности планет. Солнечный свет поглощается поверхностью планеты и её атмосферой (особенно излучение в ближней УФ- и ИК-областях) и разогревает их. Нагретая поверхность планеты и атмосфера излучают в дальнем инфракрасном диапазоне: так, в случае Земли при равном 300 K, 75 % теплового излучения приходится на диапазон 7,8—28 мкм.

Атмосфера, содержащая многоатомные газы (двухатомные газы диатермичны — прозрачны для теплового излучения), поглощающие в этой области спектра (т. н. парниковые газы — H2O, CO2, CH4 и пр. ), существенно непрозрачна для такого излучения, направленного от её поверхности в космическое пространство, то есть имеет в ИК-диапазоне большую оптическую толщину. Вследствие такой непрозрачности атмосфера становится хорошим теплоизолятором, что, в свою очередь, приводит к тому, что переизлучение поглощённой солнечной энергии в космическое пространство происходит в верхних холодных слоях атмосферы. В результате эффективная температура Земли как излучателя оказывается более низкой, чем температура её поверхности.

Влияние парникового эффекта на климат планет

Степень влияния парникового эффекта на приповерхностные температуры планет (при оптической толщине атмосферы < 1) зависит от оптической плотности парниковых газов и, соответственно, их парциального давления у поверхности планеты. Таким образом, парниковый эффект наиболее выражен у планет с плотной атмосферой, составляя у Венеры ~500 K.

Вместе с тем следует отметить, что величина парникового эффекта зависит от количества парниковых газов в атмосферах и, соответственно, зависит от химической эволюции и изменений состава планетарных атмосфер.

Парниковый эффект и климат Земли

Климатические индикаторы за последние 0,5 млн лет: изменение уровня океана, концентрация 18O в морской воде, концентрация CO2 в антарктическом льду. Деление временной шкалы — 20 000 лет. Пики уровня моря, концентрации CO2 и минимумы 18O совпадают с межледниковыми температурными максимумами.

При неизменности солнечной постоянной и, соответственно, потока солнечной радиации, среднегодовые приповерхностные температуры и климат, определяются тепловым балансом Земли. Для теплового баланса выполняются условия равенства величин поглощения коротковолновой радиации и излучения длинноволновой радиации в системе Земля-атмосфера. В свою очередь, доля поглощенной коротковолновой солнечной радиации определяется общим (поверхность и атмосфера) альбедо Земли, на величину потока длинноволновой радиации, уходящей в космос, существенное влияние оказывает парниковый эффект, в свою очередь, зависящий от состава и температуры земной атмосферы.

Основными парниковыми газами, в порядке их оцениваемого воздействия на тепловой баланс Земли, являются водяной пар, углекислый газ, метан и озон

Водяной пар H2O 36 — 72 %

Диоксид углерода CO2 9 — 26 %

Метан CH4 4 — 9 %

Озон O3 3 — 7 %

Главный вклад в парниковый эффект земной атмосферы вносит водяной пар или влажность воздуха тропосферы, влияние других газов гораздо менее существенно по причине их малой концентрации.

Вместе с тем концентрация водяного пара в тропосфере существенно зависит от приповерхностной температуры: увеличение суммарной концентрации «парниковых» газов в атмосфере должно привести к усилению влажности и парникового эффекта, который в свою очередь приведет к увеличению приповерхностной температуры.

При понижении приповерхностной температуры концентрация водяных паров падает, что ведет к уменьшению парникового эффекта, и, одновременно с этим при снижении температуры в приполярных районах формируется снежно-ледяной покров, ведущий к повышению альбедо и, совместно, с уменьшением парникового эффектом, вызывающим понижение средней приповерхностной температуры.

Таким образом, климат на Земле может переходить в стадии потепления и похолодания в зависимости от изменения альбедо системы Земля — атмосфера и парникового эффекта.

Климатические циклы коррелируют с концентрацией углекислого газа в атмосфере: в течение среднего и позднего плейстоцена, предшествующих современному времени, концентрация атмосферного углекислого газа снижалась во время длительных ледниковых периодов и резко повышалась во время кратких межледниковых.

В течение последних десятилетий наблюдается рост концентрации углекислого газа в атмосфере, считается, что этот рост в значительной степени имеет антропогенный характер.

В конце восьмидесятых — начале девяностых годов XX века несколько лет подряд среднегодовая глобальная температура была выше обычной. Это вызвало опасения, что вызванное человеческой деятельностью глобальное потепление уже началось. Среди ученых существует консенсус, что за последние сто лет среднегодовая глобальная температура поднялась на 0,3 — 0,6 градусов Цельсия. Существует научный консенсус, что жизнедеятельность человека является основным фактором, который влияет на текущее повышение температуры на Земле.

Большая доля электроэнергии (63,2%) в мире вырабатывается на ТЭС. Поэтому вредные выбросы этого типа электростанций в атмосферу обеспечивают наибольшее количество антропогенных загрязнений в ней. Так, на их долю приходится примерно 25% всех вредных выбросов, поступающих в атмосферу от промышленных предприятий. Нужно отметить, что за 20 лет с 1970 по 1990 год в мире было сожжено 450 млрд. баррелей нефти, 90 млрд. т угля, 11 трлн. м3 газа.

Основные воздействия ТЭС на окружающую среду, классификация воздействий.

Воздействие - привнесение в окружающую среду или выведение из окружающей среды материальных субстанций, наложение полей, волновых процессов, тепловыделения, нарушение функционирования природных объектов. Воздействия ТЭС на окружающую среду можно разделить на:

- физические воздействия, включающие в себя: акустическое воздействие, электро-магнитное воздействие, радиационное, тепловое загрязнение;

- непосредственные воздействия связанные с привнесением или изъятием из природной среды отдельных компонентов (химическое загрязнение, выбросы вредных веществ)

- косвенные воздействия, включающие в себя: гравитационное осаждение твердых частиц и аэрозолей, химические реакции вредных веществ выброшенных в атмосферу и гидросферу, а также на почве, вымывание из атмосферы NOX, SO2, SO3 с образованием кислотных осадков, изменение гидрологического и гидрохимического режимов грунтовых вод, изменение инсоляции в зоне рассеивания дымового факела, в зоне паров от градирни.

Основными последствиями данных воздействий являются:

- изменение состава природной среды;

- изменение растительного покрова,

- изменение климата;

- состояния недр;

- ландшафта;

- условий природопользования.

Влияние вредных воздействий ТЭС на окружающую среду. Локальные, региональные и макроэкономические уровни воздействия.

Для ТЭС характерна следующая особенность воздействия на окружающую среду:

высокая локализованность воздействия с большой интенсивностью использования природных ресурсов, выделения вредных веществ, тепла, других воздействий. Так например объем дымовых газов выбрасываемых крупной ТЭС составляет порядка 1800 м3/с. Все воздействия ТЭС можно подразделить по масштабу воздействия:

- локальное воздействие - это воздействие ТЭС на окружающую среду в радиусе от 15 до 100 км, К локальным воздействиям относится пыление золоотвалов, изменение ландшафта, поражение птиц током от линий электропередач, изменение термических режимов объектов, в частности озер и рек и т.д.

- региональное воздействие в данном случае рассматривается радиус 1000..1500км, воздействия ТЭС представляют собой сверхдальние и трансграничные переносы загрязняющих веществ, возникновение кислотных дождей.

- макроэкономические, глобальные воздействия представляют собой воздействия на территорию всей страны или всей планеты. Это сокращение запасов чистой пресной воды, природных ресурсов, глобальное потепление, вызванное выбросами СО2, возникновение озоновых дыр, вызванное эмиссией оксидов азота и т.д.

Акустическое воздействие ТЭС на окружающую среду. Основные ограничения на акустические воздействия.

Для оценки шумового воздействия ТЭС на окружающую среду используют следующие параметры:

- акустическая частота (1-16Гц инфразвуковая частота, 16Гц-20кГц звуковая частота, 350-80Гц среднечастотная, 800Гц - высокочастотная);

- уровень звукового давления

- уровень шумового воздействия от оборудования ТЭС в dB.

Основные источники акустического воздействия:

- паропровод, аварийный сброс пара в атмосферу 140..160dB;

- парораспределительный пункт 120..130dB;

- газопровод 105..130dB; -дымосос 110dB;

- силовые трансформаторы 105..110dB.

- диаметр паропровода должен приниматься из расчетной скорости пара не более 60..70м/с, трубопроводы должны покрываться тепло и звукоизоляцией;

- газораспределительный пункт должен располагаться в отдельном здании на промышленной площадке. Для снижения уровня шума на всех редуцирующих щитках ГРП устанавливаются шумоглушители;

- газопроводы от ГРП до котлов должны покрываться тепло- и звукоизоляцией;

- выхлопные паропроводы предохранительных клапанов оснащаются шумоглушителями.

С учетом вышеизложенного уровень шума на рабочих местах должен составлять не более 80 дБА, а на расстоянии 2км от ТЭС не более 45дБА.

Классификация сбросных вод.

При эксплуатации ТЭС существуют следующие виды сбросных вод:

- Сбросные воды из систем охлаждения, рассматриваются как условно чистые воды, источник теплового загрязнения окружающей среды, при прямоточной системе охлаждения сброс тепла составляет около 50% от тепла выделяемого от сжигания топлива.

- Сточные воды прямоточной системы технического водоснабжения. После использования в системе охлаждения эти воды поступают в водоем без очистки, вследствие контакта с теплообменным аппаратом, протечек охлаждающей среды являются источником загрязнений таких как мазут и нефтепродукты.

- Сточные воды оборотной системы (воды охлаждается в градирнях)

- Сточные воды ВПУ. Объем стоков достигает 30% производства обессоливающей установки.

- Продувочные воды системы охлаждения, включают хлориды, сульфаты, смеси солей исходной воды с концентрацией выше исходной в 5-10 раз.

- Нефтесодержащие воды, главным источником которых являются маслоохладители турбин.

- Сточные воды гидрозолоулавливания (ПЗУ) и продувочные воды ПЗУ.

- Непроектные сбросы, связанные с повреждением оборудования.

-Периодические стоки в частности обмывочные воды РВП, обмывочные воды конвективных поверхностей нагрева, сточные воды химпромывок.

Понятие теплового загрязнения. Методы борьбы с тепловым загрязнением окружающей среды.

Энергетические загрязнения до середины XX века особого значения не имели. Однако с ростом энергии мировой промышленности, масштабы таких загрязнений резко возросли и сейчас представляют большую опасность.

Наиболее распространенными являются тепловые загрязнения, к которым наиболее чувствительны водные организмы, привычные к большому постоянству температуры среды. Повышение температуры водоемов в результате сброса тепловых стоков снижает количество растворенного в воде кислорода, изменяет скорость обмена веществ, поэтому большинство живущих в воде организмов могут переносить лишь небольшое колебание температуры.

Тепловым загрязнением считается результат, когда температура водоема в летний период поднимается более чем на 3°С, а зимой более чем на 5°С по сравнению с естественным уровнем температуры. При температуре воды близкой к 30°С у водоемов снижается продуктивность, а выше этой температуры организмы в водоеме гибнут.

Тепловое воздействие ТЭС на атмосферу характеризуется интенсивностью тепловых выбросов измеряемых в Вт/м2 удельное тепловыделение. Зона влияния 10000 км2.

Борьба с тепловым загрязнением заключается в повторном использовании подогретой воды, как источника низкопотенциального тепла и свежей воды в цикле ТЭС, использование низкопотенциального тепла для отопления, в технологических процессах других предприятий.

Заключение

Уверена, что мы своим отношением к природе уподобляемся рубящему сук под собой. Испортили, а потом начинаем кричать об этом. Я считаю, что сейчас все силы надо бросить на то, чтобы на каждом производстве был разработан замкнутый цикл, то есть чтобы ничего не выбрасывалось ни в воздух, ни в реки, а все перерабатывалось и использовалось. От этого все только выиграют. Государство получит дополнительную продукцию, а люди будут дышать чистым воздухом. Вероятно, перспектива парникового эффекта может стать катализатором всемирного осознания срочной необходимости начала действий по защите нашей Земли.