- •2. Определители 2 и 3-го порядков. Вычисление определителя n-го порядка. Свойства определителей 3-го порядка.
- •3.Обратная матрица и ее построение. Теорема существования и единственности обратной матрицы. Матричный метод решения невырожденных систем линейных алгебраических уравнений.
- •4. Ранг матрицы. Вычисление ранга матрицы методом окаймляющих миноров и с помощью элементарных преобразований.
- •4.2. Решение систем линейных уравнений.
- •4.3 Решение невырожденных линейных систем. Формулы Крамера
- •7 Вопрос Системы линейных однородных уравнений
- •6Вопрос Решение систем линейных уравнений методом Гаусса
- •8 Вопрос Декартова система координат. Понятие вектора. Линейные операции над векторами. Координаты вектора. Линейная зависимость и независимость векторов. Понятие базиса.
- •5.2. Линейные операции над векторами
- •Линейная зависимость и независимость векторов
- •20. Взаимное расположение прямой и плоскости. Угол между прямой и плоскостью.
- •Эллипсоид
- •Однополостный гиперболоид
- •Двуполостный гиперболоид
- •Гиперболический параболоид
- •Эллиптический цилиндр
- •Гиперболический цилиндр
- •Параболический цилиндр
- •22 Вопрос Эллипсоид.
- •24. Параболоиды.
- •26. Евклидово пространство. Неравенство Буняковского-Коши. Ортогональный и ортонормированный базисы. Разложение вектора по ортогональному базису.
- •Вопрос 27 Линейные операторы. Матрица линейного оператора. Действия над линейными операторами. Зависимость между матрицами линейного оператора в различных базисах.
- •Применение квадратичных форм к исследованию кривых второго прядка
- •Линейный двучлен. Теорема Безу.
- •Деление многочленов
- •42.Замечательные пределы.
- •Вопрос 43
- •1. Теорема Ролля
- •2. Теорема Лагранжа
- •3. Теорема Коши
- •4. Правило Лопиталя
- •Геометрический смысл производной
- •Механический смысл производной
6Вопрос Решение систем линейных уравнений методом Гаусса
Одним из наиболее универсальных и эффективных методов решений линейных алгебраических систем является метод Гаусса, состоящий в последовательном исключении неизвестных.
Пусть дана система уравнений

Процесс решения по методу Гаусса состоит из двух этапов. На первом этапе (прямой ход) система приводится к ступенчатому (в частности, треугольному) виду.
Приведенная ниже система имеет ступенчатый вид
![]()
![]()
Где Коэффициенты aii называются главными элементами системы.
На втором этапе (обратный ход) идет последовательное определение неизвестных из этой ступенчатой системы.
Опишем метод Гаусса подробнее.
Будем считать, что
элемент
(если
a11=0
, то первым в системе запишем уравнение,
в котором коэффициент при х1 отличен
от нуля).
Преобразуем
систему (4.3), исключив неизвестное
х1 во всех уравнениях, кроме первого
(используя элементарные преобразования
системы). Для этого умножим обе части
первого уравнения на
и
сложим почленно со вторым уравнением
системы. Затем умножим обе части первого
уравнения на
и
сложим с третьим уравнением системы.
Продолжая этот процесс, получим
эквивалентную систему

Здесь
—
новые значения коэффициентов и правых
частей, которые получаются после первого
шага.
Аналогичным
образом, считая главным элементом
,
исключим неизвестное х2из
всех уравнений системы, кроме первого
я второго, и так далее. Продолжаем этот
процесс, пока это возможно.
Если в процессе
приведения системы (4.3) к ступенчатому
виду появятся нулевые уравнения, т. е.
равенства вида 0=0, их отбрасывают Если
же появится уравнение вида
то
это свидетельствует о несовместности
системы.
Второй этап (обратный ход) заключается в решении ступенчатой системы. Ступенчатая система уравнений, вообще говоря, имеет бесчисленное множество решений, В последнем уравнении этой системы выражаем первое неизвестное xkчерез остальные неизвестные (xk+1,…,xn). Затем подставляем значение xk в предпоследнее уравнение системы и выражаем xk-1 через (xk+1,…,xn). , затем находим xk-2,…,x1.. Придавая свободным неизвестным (xk+1,…,xn). произвольные значения, получим бесчисленное множество решений системы.
Замечания:
1. Если ступенчатая система оказывается треугольной, т. е. k=n, то исходная система имеет единственное решение. Из последнего уравнения находим xn из предпоследнего уравнения xn-1, далее поднимаясь по системе вверх, найдем все остальные неизвестные (xn-1,...,x1).
2. На практике удобнее работать не с системой (4.3), а с расширенной ее матрицей, выполняя все элементарные преобразования над ее строками. Удобно, чтобы коэффициент a11 был равен 1 (уравнения переставить местами, либо разделить обе части уравнения на a11¹1).
Пример 4.4.
Решить систему методом Гаусса:

Решение: В результате элементарных преобразований над расширенной матрицейсистемы

исходная система свелась к ступенчатой:
![]()
Поэтому общее решение системы: x2=5x4-13x3-3;x1=5x4-8x3-1 Если положить, например, x3=0,x4=0, то найдем одно из частных решений этой системы x1=-1,x2=-3,x3=0,x4=0.
