Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Критерии симметрии- Пилат А..docx
Скачиваний:
28
Добавлен:
17.02.2016
Размер:
48.39 Кб
Скачать

Критерий Колмогорова-Смирнова:

Критерий согласия Колмогорова предназначен для проверки гипотезы о принадлежности выборки некоторому закону распределения, то есть проверки того, что эмпирическое распределение соответствует предполагаемой модели.

Критерий однородности Смирнова используется для проверки гипотезы о принадлежности двух независимых выборок одному закону распределения, то есть о том, что два эмпирических распределениясоответствуют одному и тому жезакону.

Эти критерии носят имена математиков Андрея Николаевича КолмогороваиНиколая Васильевича Смирнова.

Критерий Смирнова о проверке гипотезы об однородности двух эмпирических законов распределения является одним из наиболее часто используемых непараметрических критериев.

Параметрические критерии:

Группа статистических критериев, которые включают в расчет параметры вероятностного распределения признака (средние и дисперсии).

T-критерий Стьюдента:

t-критерий Стьюдента — общее название для класса методов статистической проверки гипотез (статистических критериев), основанных на распределении Стьюдента. Наиболее частые случаи применения t-критерия связаны с проверкой равенства средних значений в двух выборках.

t-статистика строится обычно по следующему общему принципу: в числителе случайная величина с нулевым математическим ожиданием (при выполнении нулевой гипотезы), а в знаменателе — выборочное стандартное отклонение этой случайной величины, получаемое как квадратный корень из несмещенной оценки дисперсии.

Критерий Фишера:

F-тестом или критерием Фишера (F-критерием, φ*-критерием) — называют любой статистический критерий, тестовая статистика которого при выполнении нулевой гипотезы имеет распределение Фишера (F-распределение).

Статистика теста так или иначе сводится к отношению выборочных дисперсий (сумм квадратов, деленных на «степени свободы»). Чтобы статистика имела распределение Фишера необходимо, чтобы числитель и знаменатель были независимыми случайными величинами и соответствующие суммы квадратов имели распределение Хи-квадрат. Для этого требуется, чтобы данные имели нормальное распределение. Кроме того, предполагается, что дисперсия случайных величин, квадраты которых суммируются, одинакова.

Тест проводится путем сравнения значения статистики с критическим значением соответствующего распределения Фишера при заданном уровне значимости. Известно, что если , то. Кроме того, квантили распределения Фишера обладают свойством. Поэтому обычно на практике в числителе участвует потенциально большая величина, в знаменателе — меньшая и сравнение осуществляется с «правой» квантилью распределения. Тем не менее тест может быть и двусторонним и односторонним. В первом случае при уровне значимостииспользуется квантильF a/2, а при одностороннем тесте Fa.

Более удобный способ проверки гипотез — с помощью p-значения p(F) — вероятностью того, что случайная величина с данным распределением Фишера превысит данное значение статистики. Если p(F)(для двустороннего теста — 2p(F))) меньше уровня значимости , то нулевая гипотеза отвергается, в противном случае принимается.