
- •Mатематика, ч.2 методы оптимизации
- •1. Информация о дисциплине
- •1.1. Предисловие
- •1.2. Содержание дисциплины и виды учебной работы
- •1.2.1. Объем дисциплины и виды учебной работы
- •1.2.2. Перечень видов практических занятий и контроля:
- •2.2.2. Тематический план дисциплины
- •2.2.3. Тематический план дисциплины
- •2.3. Структурно-логическая схема дисциплины
- •2.4. Временной график изучения дисциплины
- •2.5. Практический блок
- •2.5.1. Практические занятия
- •2.5.1.1. Практические занятия (очная/очно-заочная формы обучения)
- •2.5.1.2. Практические занятия (заочная формы обучения)
- •2.5.2. Лабораторные работы (для всех форм обучения)
- •Балльно-рейтинговая система
- •3. Информационные ресурсы дисциплины
- •3.1. Библиографический список
- •3.2. Опорный конспект лекций введение
- •Раздел 1. Линейное программирование. Основные понятия
- •Стандартная и каноническая формы задачи линейного программирования
- •Пример 1.1.1
- •Пример 1.1.2
- •Пример 1.1.3
- •1.2. Двойственная задача
- •Пример 1.2.1
- •1.3. Базисные решения.
- •Пример 1.3.1
- •Раздел 2. Решение прямой задачи линейного программирования симплекс-методом
- •2.1. Теоремы двойственности. Алгоритм симплекс-метода
- •Пример 2.1.1
- •2.2. Анализ оптимальной симплекс-таблицы
- •2.3. Интервалы устойчивости. Ценность ресурсов
- •Пример 2.3.1
- •Пример 2.3.2
- •Пример 2.3.3
- •Раздел 3. Решение транспортной задачи. Матричные игры
- •3.1. Математическая постановка транспортной задачи
- •Пример 3.1.1
- •3.2. Матричные игры. Основные понятия
- •Пример 3.2.1
- •3.3. Решение матричных игр в смешанных стратегиях
- •Пример 3.3.1
- •3.4. Решение матричных игр симплекс-методом
- •Пример 4.3.1
- •Раздел 4. Целочисленное и нелинейное программирование
- •4.1. Задача о назначениях
- •Пример 4.1.1
- •4.2. Нелинейное программирование
- •Пример 4.2.1
- •Раздел 5. Производственные функции
- •5.1. Свойства производственных функций
- •Примеры производственных функций.
- •Пример 5.1.1
- •Пример 5.1.2
- •Пример 5.1.3
- •Пример 5.1.4
- •Пример 5.1.5
- •5.2. Характеристики производственных функций
- •Пример 5.2.1
- •Пример 5.2.2
- •Пример 5.2.3
- •5.3. Модель фирмы
- •Пример 5.3.1
- •Геометрическая иллюстрация оптимального решения
- •5.4. Функции спроса на ресурсы и функция предложения продукции
- •Пример 5.4.1
- •Вопросы для самопроверки
- •Раздел 6. Модели потребителького спроса
- •6.1. Функции полезности
- •2. Неоклассическая мультипликативная функция
- •3. Логарифмическая функция
- •Пример 6.1.1
- •Пример 6.1.2
- •Пример 6.1.3
- •6.2. Кривые безразличия
- •Пример 6.2.1
- •Пример 6.2.2
- •Пример 6.2.3
- •Вопросы для самопроверки
- •6.3. Задача потребительского выбора
- •Пример 6.3.1
- •Пример 6.3.2
- •Вопросы для самопроверки
- •6.4. Влияние на спрос цен товаров и дохода потребителя.
- •Пример 6.4.1
- •Пример 6.4.2
- •Вопросы для самопроверки
- •6.5. Уравнение Слуцкого
- •Пример 6.5.3
- •3.3. Технические и программные средства обеспечения дисциплины
- •Порядок выполнения работы
- •3.1. Выполнение задания 1
- •Пример 1.1.1
- •Решение
- •3.3.1. Построение начального базисного плана
- •3.2. Выполнение задания 2
- •Работа 2. Решение транспортной задачи и матричной игры
- •1. Цель работы
- •2. Основные теоретические положения
- •Порядок выполнения работы
- •3.1. Выполнение задания 1
- •Решение
- •3.1.1. Заполнение исходных данных
- •3.2. Выполнение задания 2 Пример
- •Решение
- •3.5. Глоссарий
- •4. Блок контроля освоения дисциплины
- •4.1. Методические указания к выполнению контрольной работы
- •4.1.1. Задание на контрольную работу
- •Варианты заданий 1 и 2
- •Вариант 1
- •Вариант 2
- •Вариант 3
- •Вариант 4
- •4.1.2. Методические указания к выполнению контрольной работы Пример задания 1
- •Записать стандартную и каноническую формы
- •Графическое решение задачи
- •Пример задания 2. Двойственная задача
- •Найти оптимальное решение двойственной задачи
- •Пример задания 3
- •Решение
- •Пример задания 4
- •1. Вычислим равновесный спрос при заданных ценах и доходе
- •4.2. Тесты текущего контроля (по разделам) Тест № 1
- •Тест № 2
- •Тест № 3
- •Тест № 4
- •Тест № 5
- •Тест № 6
- •4.3. Итоговый тест
- •4.4. Вопросы к экзамену
- •Содержание
Раздел 2. Решение прямой задачи линейного программирования симплекс-методом
При изучении данного раздела Вам предстоит:
Изучить четыре темы:
Алгоритм симплекс-метода;
Анализ симплекс-таблиц;
Интервалы устойчивости. Ценность ресурсов;
Ответить на вопросы рубежного теста к разделу 2.
Если Вы будете испытывать затруднения в ответах, обратитесь к Учебному пособию (Глава 2) или к Глоссарию – краткому словарю основных терминов и положений.
2.1. Теоремы двойственности. Алгоритм симплекс-метода
Изучаемые вопросы:
Теорема равновесия и следствия из нее;
Критерий оптимальности и свойства оптимального плана;
Общая схема симплекс-метода;
Решение примера;
Алгоритм симплекс-метода на примере задачи распределения ресурсов.
Анализ оптимальной симплекс-таблицы
В линейном программировании доказываются две теоремы двойственности.
Теорема 1 (основная теорема двойственности).Пустьxj,j = 1, 2,…,nобозначает допустимый план прямой задачи, аyi,i = 1, 2,…,m– допустимый план двойственной задачи. Тогда выполняется неравенство:
,
(2.1.1)
при этом на оптимальных планах всегда выполняется равенство. Если хотя бы одна из задач не имеет допустимого плана, то ни одна из них не имеет оптимального решения.
Из теоремы 1 следует, что решение задачи линейного программирования следует искать среди базисных решений.
Теорема 2 (теорема
равновесия). Для того чтобы допустимые
планыпрямой и двойственной задач были
оптималь-ными,необходимо и достаточно,
чтобы выполнялись равенства
(2.1.2)
Следствия:
Если для некоторого ограничения прямой задачи в стандартной форме выполняется строгое неравенство
(2.1.3)
то значение двойственной переменной, соответствующей этому ограничению yi = 0, т.е. теневая цена недефицитного ресурса равна 0.
Если оптимальное значение базисной переменной x j> 0, то
, (2.1.4)
т.е. производство данной продукции рентабельно.
Определим критерий, по которому можно определить является ли допустимое базисное решение оптимальным.
Критерий оптимальности. Если существуют такие допустимые решенияXиYпрямой и двойственной задач, для которых выполняется равенство целевых функцийZ =W, то эти решенияXиYявляются оптимальными решениями прямой и двойственной задач соответственно.
Заметим, что критерию оптимальности удовлетворяет базисное решение прямой задачи в примере 1.3.1 п.2).
x1= 100,x2= 50,s1=0,s2=0 и соответствующее ему решение двойственной задачиy1=4,y2= 200 является допустимым.
Из теорем двойственности следует, что оптимальные решения прямой и двойственной задач распределения ресурсов должны удовлетворять следующим свойствам:
все производства, входящие в оптимальный план прямой задачи должны быть рентабельными, т.е. для всех базисных переменных xj приведенные стоимости Δj = 0;
все производства, не входящие в оптимальный план, должны быть неприбыльными; т.е. для всех небазисных переменных xj приведенные стоимости Δj ≥ 0;
Иначе говоря, допустимый базисный план прямой задачи X– неоп-тимальный, если хотя бы для одной небазисной переменнойxjвеличина Δj < 0, т.е. хотя бы одно небазисное производство прибыльно.
максимальное значение выручки в прямой задаче Z будет равно минимальной стоимости всех ресурсов в теневых ценах W, т.е. max Z = min W.
Симплекс-методсостоит в построении последовательности базисных решений прямой задачи, которая приводит к оптимальному базисному решению. Выбирают некоторым способом начальный базисный план прямой задачи и находят теневые цены, ему соответствующие. Если в этих ценах все производства – неприбыльные, т.е. теневые цены являются допустимыми, то начальный базисный план прямой задачи является оптимальным планом. Если же в этих ценах хотя бы одно небазисное производство прибыльно, то переменная одного прибыльного производства вводится в базисный план и для нового базисного плана повторяется все, что и для начального базисного плана прямой задачи. Так продолжается до тех пор, пока не будут найдены такие теневые цены, при которых все производства будут неприбыльными. Алгоритм симплекс-метода покажем на примере.