Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Занятие 28.doc
Скачиваний:
44
Добавлен:
16.02.2016
Размер:
597.5 Кб
Скачать

Энергетическая светимость тела связана с и соотношениям .

Способность тела поглощать лучистую энергию характеризуется коэффициентом поглощения (поглощательной способностью), равным отношению потока излучения, поглощенного данным телом, к потоку излучения, упавшего на него:

. (28.5)

Так как коэффициент поглощения зависит от длины волны, то вводят монохроматический (спектральный) коэффициент поглощения (спектральная поглощательная способность), равный отношению потоков монохроматического излучения:

. (28.6)

Абсолютно черным называется тело, способное поглощать при любой температуре все падающее на него излучение любой частоты. Поглощательная способность абсолютно черного тела для всех частот и температур тождественно равна единице .

Абсолютно черных тел в природе нет, однако такие тела, как сажа, платиновая чернь, черный бархат и некоторые другие, в определенном интервале частот по своим свойствам близки к ним.

Идеальной моделью абсолютно черного тела является замкнутая полость с небольшим отверстием, внутренняя поверхность которой зачернена (рис. 28.1). Луч света, попавший внутрь такой полости, испытывает многократное отражение от стенок, в результате чего интенсивность вышедшего излучения оказывается практически равной нулю.

Рис. 28.1

Закон Стефана - Больцмана: энергетическая светимость абсолютно черного тела пропорциональна четвертой степени его термодинамической температуры:

, (28.7)

где  постоянная Стефана - Больцмана.

Закон смещения Вина: длина волны , соответствующая максимальному значению спектральной плотности энергетической светимостиабсолютно черного тела, обратно пропорциональна его абсолютной температуре:

,

где = 2,9. 103 м К – постоянная Вина.

Вин установил также, что максимальная спектральная плотность энергетической светимости абсолютно черного тела пропорциональна пятой степени абсолютной температуры:

где – вторая постоянная Вина.

Из рассмотрения законов Стефана - Больцмана и Вина следует, что термодинамический подход к решению задачи о нахождении спектральной плотности энергетической светимости (универсальной функции Кирхгофа) е не дал желаемых результатов.

Правильное согласующееся с опытными данными выражение для спектральной плотности энергетической светимости абсолютно черного тела было найдено в 1900 г. немецким физиком М. Планком. Для этого ему пришлось отказаться от установившегося в физике представления об электромагнитном излучении как о непрерывной электромагнитной волне, которая может иметь любую частоту и, следовательно, переносить любые количества энергии. Планк высказал гипотезу, согласно которой электромагнитное излучение испускается в виде отдельных порций (квантов), величина которых пропорциональна частоте излучения:

, (28.8)

где  постоянная Планка.

Так как излучение испускается порциями h, то излученная энергия должна быть кратной величине этой порции, т.е.

. (28.9)

На основании представления о квантовом характере теплового излучения М. Планк, пользуясь статистическим методом, получил следующие выражения для спектральной плотности энергетической светимости (универсальной функции Кирхгофа):

(28.10)

и

(28.11)

которые блестяще согласуются с экспериментальными данными по распределению энергии в спектрах излучения абсолютно черного тела во всем интервале частот от 0 до и при различных температурах.

Гипотеза Планка, решившая задачу теплового излучения абсолютно черного тела, получила подтверждение и дальнейшее развитие при объяснении фотоэффекта. Различают фотоэффект внешний, внутренний и вентильный.

Внешним фотоэлектрическим эффектом (фотоэлектронной эмиссией) называется испускание электронов веществом под действием света. Электроны, вылетающие из вещества при внешнем фотоэффекте, называются фотоэлектронами, а электрический ток, образуемый ими при упорядоченном движении во внешнем электрическом поле, называется фототоком.

Внутренним фотоэффектом называется перераспределение электронов по энергетическим состояниям в твердых и жидких полупроводниках, происходящее под действием света (фотосопротивления).

Вентильным фотоэффектом (фотоэффектом в запирающем слое) называется возникновение под действием света ЭДС (фотоЭДС) в системе, состоящей из контактирующих полупроводника и металла или двух разнородных полупроводников.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]