Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Учебник АДФХДП 2011.pdf
Скачиваний:
194
Добавлен:
15.02.2016
Размер:
2.91 Mб
Скачать

4.4. Методика проведения анализа стохастических факторных систем

Сущность и основные этапы анализа стохастических факторных систем

Стохастическая (вероятностная, корреляционная) зависимость характеризуется тем, что связи между факторами и результатом их взаимодействия не имеют постоянной формы, а носят случайный вероятностный характер. О них можно говорить лишь в среднем, приближенно, с определенной степенью точности. Необходимо устанавливать их каждый раз заново для одного и того же объекта, если изменились условия его функционирования. Выявление формы связи, то есть ее

моделирование,

осуществляется

на основе

выборочного

наблюдения

за

последовательностью

однородных,

повторяющихся явлений путем исчисления средних для данной выборки характеристик. По связи между этими средними судят о характере зависимости в целом.Стохастический подход к исследованию причинно-следственных связей результативного показателя с факторами, обуславливающими его изменение во времени и пространстве, направлен на выявление общих закономерностей хозяйственных явлений и процессов путем изучения массовых эмпирических данных о конкретных реализациях этих явлений и процессов. При этом изучаются свойства и законы варьирования показателей с целью определения той части изменения результативного показателя, которую можно отнести на долю влияния каждого из анализируемых факторов.

Основные этапы анализа стохастических факторных систем: 1. Изучается наличие и направление связей между факторными и результативными показателями. Предположение о наличии и тесноте стохастической связи делается в случае выявления общих закономерностей в вариации анализируемых показателей. Для этого используются стандартные способы

статистического анализа: сравнение,

параллельных

и

динамических рядов, аналитические группировки, графики.

2. Изучается

интенсивность

связи

между

результативными и факторными показателями, так как источники возникновения общих закономерностей изменения могут быть

104

различными: причинно-следственная связь между показателями, зависимость от общего фактора, случайное совпадение элементов (параметров) вариации. Для этого используется парная и множественная корреляция. Связь между результативным и факторным показателями проверяется методом парной коореляции. Множественная корреляция – взаимодействие нескольких факторов с результативным показателем. Необходимым условием применения корреляционного анализа являетя наличие достаточно большого количества наблюдений о величине исследуемых факторных и результативных показателей (в динамике или за текущий год по совокупности однородных объектов), которые должны иметь количественное измерение.

3.В процессе анализа необходимо раскрыть причинную основу взаимосвязи между количественными характеристиками хозяйственных процессов и явлений и сформировать факторную модель, определив вид связи и коэффициенты в факторной модели. Для этой цели наиболее часто используются методы регрессионного анализа.

4.Далее на основе сформированной модели определяется влияние каждого фактора на результативный показатель, т.е. проводится факторный анализ методами, описанными в п.4.3

В зависимости от характера исходной информации применяются разные приемы корреляционного анализа:

оценка парной корреляции между показателями с цифровой шкалой измерения;

ранговая корреляция и коэффициенты, рассчитанные по матрицам сопряженности при анализе связей между качественными показателями, например, при тестировании кандидатов или абитуриентов ряды можно построить путем ранжирования (определения номера места) показателя в ряду;

каноническая корреляция при анализе связи между группами показателей разной размерности;

частная корреляция, позволяющая исследовать связь между двумя показателями путем элиминирования (устранения) искажающего влияния на совместный одинаковый характер изменения (варьирования) двух показателей при общих для них одного или нескольких факторах;

множественная корреляция при оценке зависимости одного результативного показателя от группы факторов-аргументов.

105

Рассмотрим кратко наиболее часто используемые методы парной и множественной корреляции. Более подробно исследование стохастических факторных систем изучается в курсе статистики.

Парный корреляционно-регрессионный анализ

Применение корреляционно-регрессионного анализа позволяет определить формулу расчета изменения результативного показателя под воздействием одного или нескольких факторов (в абсолютном измерении) и установить относительную степень зависимости результативного показателя от фактора.

Для решения первой задачи подбирается соответствующий тип математического уравнения, которое наилучшим образом отражает характер изучаемой связи. Легче всего определить тип модели используя графический анализ (Рисунок 8)

Рисунок 8 - Графический анализ характера изучаемой связи между факторным и результирующим показателем.

В случае, если графический анализ показывает зависимость между фактором и результатом, можно использовать корреляционный анализ для оценки степени близости фактических точек разброса к функции того или иного вида.

Прямолинейную зависимость характеризует уравнение прямой: Y = a + bx, где х – факторный показатель, Y – результативный показатель, a – постоянная величина

106

результативного показателя, которая не связана с изменением данного фактора, b – показывает среднее изменение результативного показателя с повышением или понижением величины фактора на единицу его измерения.

При криволинейной зависимости между изучаемыми явлениями уравнение связи решается по такому же принципу. Уравнение может быть уравнением гиперболы, параболы и т.д.

Часто при графическом анализе колебания настолько велики, что догадаться о форме зависимости не представляется возможным. В этом случае сначала используются методы сглаживания, потом выявляется тренд.

Степень "прямолинейности" можно измерить с помощью Присоновского коэффициента корреляции (линейного коэффициент корреляции r)

 

 

 

 

 

 

 

 

 

 

 

r

 

xy nx

y

 

 

 

 

)(y2 n

 

2 )

 

 

 

(x2 nx

y

Для линейной функции значение r находится в пределах от +1 до –1. Этот коэффициент измеряет тесноту связи с линейной зависимостью.

Коэффициенты корреляции, исчисленные по данным сравнительно небольшой статистической совокупности, могут искажаться под действием случайных причин. Поэтому необходима проверка их сущности. Для= оценки−2значимости r

применяется t-критерий Стьюдента 1− 2. При этом

определяется фактическое значение критерия tr и сравнивается с критерием tк, которое берется из таблицы (Таблица 18). Если tr > tк, то величина коэффициента корреляции признается существенной.

Таблица 18 - Количественные критерии оценки тесноты связи (шкала Чеддока)

107

В случае сравнения индикатора и результата высокий положительный коэффициент корреляции (скажем, больше +0,70) означает, что за изменением фактора должно последовать соответствующее изменение показателя результата. Высокая отрицательная корреляция (например, меньше 0,70) говорит о том, что изменение индикатора обычно вызывает изменение результата в противоположном направлении. Низкий (т.е. близкий к нулю) коэффициент корреляции означает слабую взаимосвязь результата и фактора.

Коэффициент детерминации (возведенный в квадрат коэффициент корреляции) можно использовать для количественного определения характеристики, связывающей фактор и результат. Например, если коэффициент детерминации при расчете зависимости объема реализации от расходов на рекламу равен 0,64, то можно говорить о том, что 64% изменений в объеме реализации связаны с изменением расходов на рекламу.

Для ранговой корреляции находятся разницы между парами

рангов (d) и коэффициент ранговой корреляции

2

6∑ 2 ,

где n – число значений в ряду. Этот

коэффициент измеряет

 

= 1 ( −1)

тесноту связи между ранжированными рядами. Значение его находится в пределах от +1 до –1, чем ближе он к +1 или – 1, тем зависимость больше.

Для нелинейных зависимостей оценка тесноты связи производится путем исчисления корреляционного отношения, которое можно применять при любой форме зависимости, однако для его исчисления сначала необходимо с помощью регрессионного анализа функцию и рассчитать выровненные

значения результативного показателя yх f(x):

 

 

 

=

 

 

,

где

2 =

 

2

2 =

 

 

 

2

2

2

 

 

 

 

 

 

 

( )

 

)

 

 

 

 

 

(

 

 

2

 

 

 

 

 

 

 

 

При истолковании получившихся значений необходимо оценивать результат с точки зрения логики. Например, при расчете двух рядов был получен весьма высокий коэффициент корреляции, однако явной причинной зависимости между рядами не наблюдается. Это может быть связано с тем, что оба эти ряда зависят от одной и той же третьей величины (фактора), который при анализе во внимание не принимался.

108

Наряду с определением тесноты связи необходимо выявить аналитическую форму связи. При стохастическом подходе такая задача решается методом регрессионного анализа. Слово "регрессия" (латинское regressio) означает "движение назад". В отличие от корреляционного анализа, при котором выявляются связи, зачастую, между случайными величинами, при регрессионном анализе ставится задача нахождения средней величины случайной переменной в том случае, если величина другой переменной (или других переменных - в зависимости от поставленной задачи) известна.

Регрессионный анализ включает в себя три этапа:

построение модели (аналитического уровня) взаимосвязи результативного показателя с взаимодействующими факторами;

решение принятой модели путем нахождения параметров регрессионного управления;

оценка и анализ полученных результатов.

Линия регрессии – это линия наилучшего соответствия,

проходящая через точки графика разброса. Уравнение линии регрессии при линейной зависимости могут быть рассчитаны на основе решения уравнения: y = a + bx

по формулам:

При связи по формуле:

решается уравнение

При связи по формуле:

решается уравнение

109