
- •Глава 6. Химия и обмен липидов Клинико-лабораторное значение
- •В зависимости от функций в организме различают две группы липидов:
- •По химическому строению липиды разделяют на омыляемые и неомыляемые
- •Nb! Жирные кислоты - это алифатические карбоновые кислоты
- •Nb! Некоторые липиды могут гидролизоваться щелочью
- •Nb! Свойства ацилглицеролов зависят от их состава
- •Nb! Функции ацилглицеролов в организме многообразны
- •Nb! Воска выполняют защитные функции
- •Nb! Сложные липиды - главные компоненты биологических мембран
- •Nb! Фосфолипиды - сложные липиды, содержащие фосфор
- •Nb! Сфингофосфолипиды содержат в своем составе сфингозин
- •Плазмалогены - эфирные производные глицерофосфолипидов
- •Nb! Гликолипиды - сфинголипиды, содержащие углеводы
- •Nb! Сульфолипиды – гликолипиды, содержащие остаток серной кислоты
- •Nb! Неомыляемые липиды не гидролизуются щелочью
- •Высшие спирты
- •Высшие углеводороды - производные изопрена
- •Nb! Простагландины - продукты окисления жирных кислот
- •Nb! Желчные кислоты образуются в печени из эфиров холестерола
- •Nb! Переваривание липидов катализирует липаза
- •Nb! Продукты гидролиза липидов участвуют в образовании мицелл
- •Основная часть всосавшихся в тонком кишечнике липидов принимает участие в ресинтезе таг.
- •Nb! Липиды транспортируются в крови в составе липопротеинов
- •Такая конфигурация является высоко устойчивой и облегчает растворимость микрокапель неполярных липидов. Номенклатура и характеристика лп
- •Nb! Липиды, поступившие из кишечника (экзогенные), транспортируются в кровотоке в составе хм
- •Nb! Липиды, синтезированные в печени (эндогенные), транспортируются в форме лпонп и лпвп
- •Роль липопротеинов плазмы крови в развитии атеросклероза
- •Липопротеин (а)
- •Наследственные нарушения обмена липопротеинов плазмы крови
- •Источники, депонирование, высвобождение и транспорт жирных кислот в организме
- •Расходование жирных кислот
- •Окисление жирных кислот
- •Nb! Энергетический выход -окисления жирных кислот зависит от длины углеводородной цепи.
- •Регуляция -окисления
- •Биосинтез жирных кислот
- •Особенность синтеза жирных кислот грудного молока
- •Происхождение ненасыщенных жирных кислот в клетках организма, метаболизм арахидоновой кислоты
- •Эйкозаноиды, или липидные гормоны
- •Синтез фосфолипидов
- •Сурфактант легких
- •Разрушение веществ в лизосомах и лизосомальные заболевания, вызванные недостатком ферментов
- •Общие аспекты обмена холестерола в организме, биосинтез холестерола
- •Образование и утилизация кетоновых тел
Плазмалогены - эфирные производные глицерофосфолипидов
Эти соединения содержат простую эфирную связь при С1 скелета глицерола.
При полном их гидролизе наряду с глицеролом, фосфорной кислотой и спиртом (холином) образуется одна молекула жирной кислоты и альдегид. В настоящее время известны три основных вида плазмалогенов: этаноламин, холин и серин плазмалогены. Этаноламиновые плазмалогены преобладают в составе миелина. Холиновые плазмалогены распространены в ткани сердца. К холиновым плазмалогенам, в частности, относится фактор активации тромбоцитов - медиатор, обладающий исключительной биологической активностью. Он способен вызывать клеточный ответ в концентрации 10-11 М. В структуре его молекулы ко второму углеродному атому глицерола присоединен остаток уксусной кислоты.
Присутствие в положении С-2 ацетильной группы вместо длинноцепочечной жирной кислоты делает это соединение растворимым в воде в физиологических концентрациях. Синтезируясь в клетках эндотелия сосудистой стенки, фактор активации тромбоцитов содержится в тромбоцитах и регулирует сосудистый тонус, способствует адгезии лейкоцитов, является прокоагулянтным фактором. В базофилах, нейтрофилах, эозинофилах, макрофагах и моноцитах он синтезируется в ответ на образование на их поверхности комплексов антигена с иммуноглобулином Е. Высвобождаясь из этих клеток, фактор активации тромбоцитов функционирует как медиатор повышенной чувствительности, воспалительных реакций и анафилактического шока. Он вызывает ответную реакцию в печени, сердце, гладкой мускулатуре, в матке и легочной ткани.
Nb! Гликолипиды - сфинголипиды, содержащие углеводы
Гликолипиды широко представлены в тканях. Особенно богаты ими миелиновые оболочки нервов. В состав гликолипидов также входит спирт – сфингозин. Гликолипиды не содержат фосфорной кислоты. Молекулы их имеют полярные, гидрофильные углеводные группы, чаще всего D-галактозу. Различают две группы гликолипидов – цереброзиды и ганглиозиды. В состав молекулы цереброзида входит сфингозин, связанный сложноэфирной связью с остатком жирной кислоты (этот комплекс называется церамид).
|
|
Обнаруженные в цереброзидах жирные кислоты необычны в том отношении, что они содержат 24 атома углерода. Наиболее часто встречаются нервоновая, цереброновая и лигноцериновая кислоты.
Рис.6.8.Строение цереброзидов и ганглиозидов
Углеводная часть цереброзида (рис.6.8) представлена D-галактозой, которая присоединена к сфингозину. В состав цереброзидов различных тканей организма, за исключением нервной, может входить глюкоза вместо галактозы. Ганглиозиды имеют более сложное строение. В состав молекулы ганглиозидов, помимо сфингозина, входит олигосахарид, содержащий остатки глюкозы и галактозы, а также одну или несколько молекул сиаловых кислот. Сиаловые кислоты - это производные аминосахаров. Доминирующими в составе ганглиозидов являются N-ацетил-D-глюкозамин и N-ацетилнейраминовая кислота.
Ганглиозиды обычно обнаруживаются на внешней поверхности клеточных мембран, особенно в нервных клетках. Предположительно, они выполняют там рецепторные и другие возможные функции, которые можно суммировать следующим образом (табл.6.2). Отмечается перераспределение содержания цереброзидов и ганглиозидов в ткани мозга. Если в составе белого вещества преобладают цереброзиды, то в составе серого вещества - ганглиозиды.
Таблица 6.2. Функции гликолипидов в организме
Опосредуют |
Межклеточное взаимодействие Взаимодействие клеток с межклеточным матриксом Взаимодействие клеток с микроорганизмами |
Модулируют |
Пролиферацию клеток, угнетая ее (апоптоз, нарушение клеточного цикла) Активность протеинкиназы Активность рецептора к фактору роста |
Поддерживают |
Структурную прочность мембран Конформацию мембранных белков |