
- •Глава 6. Химия и обмен липидов Клинико-лабораторное значение
- •В зависимости от функций в организме различают две группы липидов:
- •По химическому строению липиды разделяют на омыляемые и неомыляемые
- •Nb! Жирные кислоты - это алифатические карбоновые кислоты
- •Nb! Некоторые липиды могут гидролизоваться щелочью
- •Nb! Свойства ацилглицеролов зависят от их состава
- •Nb! Функции ацилглицеролов в организме многообразны
- •Nb! Воска выполняют защитные функции
- •Nb! Сложные липиды - главные компоненты биологических мембран
- •Nb! Фосфолипиды - сложные липиды, содержащие фосфор
- •Nb! Сфингофосфолипиды содержат в своем составе сфингозин
- •Плазмалогены - эфирные производные глицерофосфолипидов
- •Nb! Гликолипиды - сфинголипиды, содержащие углеводы
- •Nb! Сульфолипиды – гликолипиды, содержащие остаток серной кислоты
- •Nb! Неомыляемые липиды не гидролизуются щелочью
- •Высшие спирты
- •Высшие углеводороды - производные изопрена
- •Nb! Простагландины - продукты окисления жирных кислот
- •Nb! Желчные кислоты образуются в печени из эфиров холестерола
- •Nb! Переваривание липидов катализирует липаза
- •Nb! Продукты гидролиза липидов участвуют в образовании мицелл
- •Основная часть всосавшихся в тонком кишечнике липидов принимает участие в ресинтезе таг.
- •Nb! Липиды транспортируются в крови в составе липопротеинов
- •Такая конфигурация является высоко устойчивой и облегчает растворимость микрокапель неполярных липидов. Номенклатура и характеристика лп
- •Nb! Липиды, поступившие из кишечника (экзогенные), транспортируются в кровотоке в составе хм
- •Nb! Липиды, синтезированные в печени (эндогенные), транспортируются в форме лпонп и лпвп
- •Роль липопротеинов плазмы крови в развитии атеросклероза
- •Липопротеин (а)
- •Наследственные нарушения обмена липопротеинов плазмы крови
- •Источники, депонирование, высвобождение и транспорт жирных кислот в организме
- •Расходование жирных кислот
- •Окисление жирных кислот
- •Nb! Энергетический выход -окисления жирных кислот зависит от длины углеводородной цепи.
- •Регуляция -окисления
- •Биосинтез жирных кислот
- •Особенность синтеза жирных кислот грудного молока
- •Происхождение ненасыщенных жирных кислот в клетках организма, метаболизм арахидоновой кислоты
- •Эйкозаноиды, или липидные гормоны
- •Синтез фосфолипидов
- •Сурфактант легких
- •Разрушение веществ в лизосомах и лизосомальные заболевания, вызванные недостатком ферментов
- •Общие аспекты обмена холестерола в организме, биосинтез холестерола
- •Образование и утилизация кетоновых тел
Образование и утилизация кетоновых тел
Ацетоновые тела являются водорастворимыми формами липидных энергетических источников.
Двумя основными видами ацетоновых тел являются ацетоацетат и -гидроксибутират - восстановленная форма ацетоацетата. Последний образуется в клетках печени из ацетил~КоА. Образование происходит в митохондриальном матриксе.
Первоначальная стадия этого процесса катализируется ферментом - -кетотиолазой. Затем ацетоацетил-КоА конденсируется со следующей молекулой ацетил-КоА под влиянием фермента ГОМГ-КоА-синтетазы. В результате образуется -гидрокси--метилглютарил-КоА. Затем фермент ГОМГ-КоА-лиаза катализирует расщепление ГОМГ-КоА на ацетоацетат и ацетил-КоА. В дальнейшем ацетоуксусная кислота восстанавливается под влиянием фермента -гидроксибутиратдегидрогеназы и в результате образуется -оксимасляная кислота. Количество ацетоацетата, которое восстанавливается в -гидроксибутират, зависит от соотношения НАДН/НАД+. Восстановление это происходит под влиянием фермента -гидроксибутиратдегидрогеназы (рис.6. ). Печень служит главным местом образования кетоновых тел благодаря высокому содержанию ГОМГ-КоА-синтетазы в митохондриях гепатоцитов.
Ацетон образуется из ацетоуксусной кислоты при декарбоксилировании. Из печени поток кетоновых тел попадает во внепеченочные ткани.
Эти реакции происходят в митохондриях. В цитозоле имеются изоферменты - -кетотиолазы и ГОМГ~КоА-интетазы, которые также катализируют образование ГОМГ~КоА, но в качестве промежуточного продукта в синтезе холестерола. Цитозольный и митохондриальный фонды ГОМГ~КоА не смешиваются.
Образование кетоновых тел в печени контролируется состоянием питания. Такое контрольное действие усиливается инсулином и глюкагоном. Принятие пищи и инсулин снижают образование кетоновых тел, в то время как при голодании стимулируется кетогенез вследствие увеличения количества жирных кислот в клетках. При голодании усиливается липолиз, растет уровень глюкагона и концентрация цАМФ в печени. Происходит фосфорилирование, тем самым активация ГОМГ-КоА- синтетазы. Аллостерическим ингибитором ГОМГ-КоА-синтетазы выступает сукцинил-КоА.
В норме кетоновые тела являются источником энергии для мышц; при продолжительном голодании они могут использоваться центральной нервной системой. Следует иметь ввиду, что окисление кетоновых тел не может проходить в печени. В клетках других органов и тканей оно протекает в митохондриях. Такая избирательность обусловлена локализацией ферментов, катализирующих этот процесс.
Сначала -гидроксибутират дегидрогеназа катализирует окисление -гидроксибутирата до ацетоацетата в НАД+-зависимой реакции. Затем с помощью фермента, сукцинилКоА:АцетоацетилКоА трансферазы, кофермент А перемещается с сукцинилКоА на ацетоацетат. Образуется ацетоацетилКоА, который является промежуточным продуктом последнего витка -окисления жирных кислот. Этот фермент в печени не образуется. Именно поэтому там не может происходить окисление кетоновых тел. Зато спустя несколько суток после начала голодания в клетках мозга начинается экспрессия гена, кодирующего этот фермент. Тем самым мозг адаптируется к использованию кетоновых тел в качестве альтернативного источника энергии, снижая свою потребность в глюкозе и белке.
Тиолаза довершает расщепление ацетоацетил-КоА, встраивая КоА по месту разрыва связи между - и - углеродными атомами. В результате образуется две молекулы ацетил-КоА.
Интенсивность окисления кетоновых тел во внепеченочных тканях пропорциональна их концентрации в крови. Общая концентрация кетоновых тел в крови обычно ниже 3 мг/100 мл, а средняя ежесуточная экскреция с мочой составляет приблизительно от 1 до 20 мг. В определенных метаболических условиях, когда происходит интенсивное окисление жирных кислот, в печени образуются значительные количества так называемых кетоновых тел.
Состояние организма, при котором концентрация кетоновых тел в крови выше нормальной, называется кетонемией. Повышенное содержание кетоновых тел в моче называется кетонурией. В тех случаях, когда имеет место выраженная кетонемия и кетонурия, в выдыхаемом воздухе ощущается запах ацетона. Он обусловлен спонтанным декарбоксилированием ацетоацетата в ацетон. Эти три симптома - кетонемия, кетонурия и запах ацетона при дыхании объединяются общим названием - кетоз.
Кетоз возникает в результате недостатка доступных углеводов. Например, при голодании их мало поступает (или не поступает) с пищей, а при сахарном диабете, вследствие недостатка гормона - инсулина, глюкоза не может эффективно окисляться в клетках органов и тканей. Это приводит к дисбалансу между этерификацией и липолизом в жировой ткани в сторону интенсификации последнего. В результате большое количество жирных кислот поступает в кровоток, а затем - в клетки. Эти кислоты являются главным субстратом для образования кетоновых тел в печени. Поскольку в результате их -окисления образуется ацетил-КоА, естественно, что при увеличении количества окисляемых жирных кислот возрастает доля синтезируемых кетоновых тел.
1Углеродные атомы в составе жирной кислоты могут нумероваться цифрами или буквами греческого алфавита начиная с первого углеродного атомапослекарбоксильной группы. Тогда последний углеродный атом независимо от длины углеводородной цепи обозначается буквойω.
2В клетках имеется три различных фермента под названием ацил-КоА- лигаза, с субстратной специфичностью к длинно-, средне- и короткоцепочечным жирным кислотам. Ацил-КоА- лигаза с субстратной специфичностью к длинноцепочечным жирным кислотам (С10-С20) обнаружена в эндоплазматическом ретикулуме и на наружной митохондриальной мембране. Ферменты с субстратной специфичностью к коротко- и среднецепочечным жирным кислотам обнаружены преимущественно в митохондриальном матриксе.
3АпоВ-48 получил такое название потому, что в его молекуле содержится 48 % аминокислотного состава апо В-100.
4Фермент секретируется в плазму крови из печени. иРНК ЛХАТ обнаружена также в мозге. Однако белок, который там синтезируется, не имеет отношения к фонду ЛХАТ в плазме крови. ЛХАТ плазмы крови - это гликопротеин с молекулярной массой 60 кДа. В результате действия этого фермента образуются два продукта - эфиры холестерола и лизофосфатидилхолин (ЛФХ). ЛФХ является водорастворимым соединением, которое быстро удаляется из ЛПВП через водную фазу. В плазме он связывается с альбумином. В таком виде он легко может захватываться тканями и реэстерифицироваться в лецитин с помощью локализованных в клетках ферментов - ацил КоА-лизолецитин трансфераз. Образовавшиеся ЭХ остаются в плазме крови в составе ЛП.
5ЛПБ был открыт в 1976г. Это гликопротеин с молекулярной массой около 70 кДа. Белок может переносить также фосфолипиды. Однако эта способность у него выражена в гораздо меньшей степени, чем по отношению к ЭХ. ЛПБ не может транспортировать свободный холестерол. Предполагается два механизма действия этого белка. Согласно первой гипотезе ЛПБ выступает в качестве растворимого переносчика ЭХ, усиливая степень диффузии этих липидов между различными ЛП. Тем самым комплекс ЛПБ с липидами выступает в качестве стабильного промежуточного продукта транспортной реакции. В соответствии с другим механизмом ЛПБ выступает в качестве своеобразного молекулярного мостика между донором (ЛПВП) и акцептором (ЛПОНП, ЛПНП). За счет этого ускоряется молекулярный транспорт липидов между соединенными поверхностями ЛП. Активность ЛПБ ингибирует специальный белок плазмы крови. Действие ингибитора заключается в отщеплении ЛПБ от связывающих центров на липопротеиновых частицах.
6Фермент синтезируется в гепатоцитах, но активным становится на поверхности эндотелиальных клеток печеночных капилляров. Секреция гепатоцитами ПЛ возможна только тогда, когда от углеводной части уN-конца ее полипептидной цепи отщепится остаток глюкозы. Этот фермент обнаружен также в половых железах и других органах, в которых образуются стероидные гормоны. Туда он поступает из плазмы для последующего своего катаболизма. Как и ЛПЛ, печеночная липаза относится к сериновым гидролазам и способна связывать гепарин. Фермент катализирует гидролиз ТГ, с отщеплением радикалов жирных кислот ви- положениях, ди- и моноацилглицеролов, фосфолипидов. В отличие от ЛПЛ печеночная липаза не активируется апоС-2 и катализирует реакции трансацилирования. Например:
МАГ + фосфолипид ДАГ + лизофосфолипид.
Действие ПЛ на ЛПВП заключается в том, что фермент катализирует расщепление ФЛ на поверхности этих частиц. В результате там увеличивается относительное количество ХС, которое становится большим, чем в клеточных мембранах. Тем самым создаются условия для более активного перехода ХС с ЛПВП на мембраны клеток.
7Важность рецепторов в поглощении клетками ЛПНП демонстрируют результаты исследования наследственного заболевания, вызванного дисфункцией рецепторов к ЛПНП. В основе его лежит мутация гена, кодирующего информацию о структуре рецептора. Вследствие дефекта в структуре рецепторы теряют способность эффективно связывать ЛПНП. Заболеванию свойственны три основных признака: избирательное увеличение уровня ЛПНП в плазме крови; образование депо ХС в несвойственных этому местах, в особенности, в сухожилиях (ксантомы) и в артериальной стенке (атероматоз); наследственная передача по аутосомальнодоминантному принципу. Люди, которые унаследовали два мутантных аллеля, имеют более тяжелые проявления заболевания, чем те, у которых имеется один мутантный аллель. Частота встречаемости первого случая составляет 1 на 1 млн населения, а второго - 1 на 500. У гомозигот (две мутантных аллеля) в возрасте до 15 лет развивается общий атеросклероз, который проявляется инфарктом миокарда, стенокардией или внезапной смертью. У гетерозигот (1 мутантный аллель) клинические проявления менее тяжелы. У мужчин в 75 % случаев инфаркт миокарда развивается в возрасте до 60 лет. У женщин ишемическая болезнь сердца встречается реже и в более позднем возрасте.
8Значение ЛХАТ для обмена ЛП хорошо прослеживается при заболевании, связанном с врожденной недостаточностью этого фермента у человека. При нем активность ЛХАТ в плазме полностью отсутствует в результате чего в плазме появляются необычные ЛП, обогащенные СХ. ЛПВП лишены ЭХ и имеют дискообразную форму. СХ накапливается в плазматических мембранах клеток: эритроцитов, клеток почек, селезенки, роговицы глаза. Поэтому у таких больных часто наблюдается почечная недостаточность с вторичной гипертриацилглицеролемией, гипохромная анемия, спленомегалия, помутнение роговицы.
9Антиатерогенные свойства ЛПВП не ограничиваются участием этих частиц в обратном транспорте ХС. Они также участвуют в утилизации липидов, находящихся в составе липопротеинов, богатых ТАГ. Кроме того, ЛПВП стимулируют образование простациклина и задерживают, следовательно, агрегацию тромбоцитов; они задерживают проникновение ЛПНП в интиму артерий; тормозят пролиферацию гладкомышечных клеток артериальной стенки; способствуют солюбилизации комплексов ЛПНП – гликозаминогликан.
10Индекс массы тела (ИМТ) – масса (кг)/рост (м2). ИМТ 25 – 30 кг/м2 расценивается как избыточный вес. ИМТ>30 кг/м2расценивается как ожирение.