Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Основы токсикологии

.pdf
Скачиваний:
185
Добавлен:
13.02.2016
Размер:
8.39 Mб
Скачать

диметилсульфат, нитрозодиэтиламин и др.) и 2Б - 192 фактора (кобальт, ДДТ, акриламид, нитропирены, ПХБ и др.).

Третья группа включает 446 химических веществ, которые сегодня, на основании имеющихся данных, не могут быть отнесены к факторам канцерогенного риска для человека.

Четвертая группа - агенты, для которых существуют убедительные доказательства отсутствия канцерогенной опасности для человека (до недавнего времени здесь числилось только одно вещество - капролактам).

Перечень МАИР постоянно изменяется в результате проведения все новых и новых исследований. Он носит рекомендательный, а не обязательный характер. На территории Российской Федерации действует иной список канцерогенов, утвержденный Минздравом (приводится выше).

3.Стадии химического канцерогенеза

Индукция опухолевого роста химическими веществами - сложный, многостадийный процесс, включающий взаимодействие факторов окружающей среды и эндогенных факторов. Особенностью химического канцерогенеза является длительный период, отделяющий воздействие вещества, вызывающего опухолевый рост, от появления опухоли. Длительность периода не может быть объяснена медленным процессом созревания опухоли, т.е. превращением её из микро- в макрообразование. В ходе этого периода в "поврежденной" клетке осуществляются сложные процессы, течение которых иногда не возможно без действия дополнительных веществ (или факторов), приводящие, в конечном итоге, к её неопластической трансформации. Канцерогенез проходит через несколько стадий перед тем, как окончательно сформируется собственно опухоль. В эксперименте, как правило, выделяют три таких стадии развития опухоли: инициации, промоции, прогрессии.

Инициация опухолевого роста. Процесс непосредственного действия канцерогена на клетки, запускающий их трансформацию, называется инициацией опухолевого роста.

Впервые термин инициация был предложен в 1941 году Rous и Kidd для обозначения манипуляции, состоящей в аппликации смолы на кожу уха кролика, с целью вызвать в дальнейшем опухолевый рост. Как правило, в эксперименте для провокации неоплазмы, лишь инициации недостаточно. Необходимы и другие условия, которые определяются видом экспериментального животного, факторами окружающей среды.

Стадия инициации включает быстрое, практически необратимое повреждение генетического материала клеток, предрасполагающее их к последующему неопластическому развитию (см. разделы "Механизм действия", "Мутагенез"). Поврежденные клетки называются "инициированными" и нуждаются в периоде репликации генетического материала, с тем, что бы зафиксировать вызванные изменения (мутации). В соответствии с существующими представлениями, инициированная клетка может длительное время оставаться в состоянии покоя, не проявляя агрессии, до тех пор, пока не подействует другой (другие) фактор, побуждающий клетку к делению, клонообразованию и, тем самым, формированию опухоли.

Характерными особенностями действия инициаторов являются:

-необратимость;

-куммулятивность;

-отсутствие морфологических проявлений;

-зависимость эффекта от особенностей метаболизма клетки и фаз её клеточного цикла;

-беспороговость.

Промоция опухолевого роста. Процесс, в ходе которого инициированная клетка завершает неопластическую трансформацию называется промоцией.

Промоторы, это вещества, в строгом смысле слова, не являющиеся канцерогенами, однако их воздействие необходимо для развития опухоли. Полагают, что промоторы осуществляют экспрессию трансформировавшихся генов, что и приводит в последующем к манифестации неопластического превращения инициированной клетки. В качестве промоторов могут выступать гормоны, лекарственные препараты, продукты жизнедеятельности растений, которые вступают во взаимодействие с клеточной мембраной, рецепторными структурами ядра или цитоплазмы инициированной клетки и побуждают её к делению. Примеры структур некоторых промоторов представлены на рисунке 3.

сахарин ТХДД фенобарбитал

+ Щелкните для загрузки увеличенной копии (3,07кб, 569x168 GIF)

Рисунок 3. Примеры химического строения некоторых промоторов

Многие промоторы являются органо-специфичными. Так, сахарин - промотор экспериментальных опухолей мочевого пузыря крыс, инициируемых метилнитрозомочевиной; фенобарбитал, ТХДД - промоторы опухолей печени. Помимо указанных на рисунке 3, промоторами являются, например, эфиры форбола, (промотируют опухоли кожи), желчные кислоты (промоторы опухолей толстой кишки у экспериментальных животных), некоторые гормоны (пролактин ускоряет в эксперименте развитие опухоли молочной железы, инициируемой диметилбензантраценом), пищевые жиры, табачный дым, асбест, галогенированные углеводороды, алкоголь, и т.д.

Классический пример действия промоторов может быть представлен в эксперименте. На кожу спины мышам апплицируют диметилбенз(а)антрацен в количествах практически не увеличивающих вероятность появление опухоли в течение всей жизни животных. Спустя неделю (и более) на пораженный участок начинают периодически наносить эфиры форбола (например, 12-О-тетрадеканоилфорбол-13-ацетат). В результате опухоли начинают появляться уже спустя 5 - 6 недель после начала действия промотора, а у большинства животных опухолевый рост выявляется в течении 12 недель.

Целый ряд канцерогенов являются одновременно и инициаторами и промоторами опухолевого роста (полные канцерогены) (рис. 3).

Действие промоторов характеризуется следующими особенностями:

-обратимостью и неаддитивностью;

-наличием морфологических проявлений опухолевого роста;

-пороговостью;

-модулируемостью факторами окружающей среды.

У человека развитие неоплазмы, по сути, может быть в основном следствием действия средовой промоции.

Прогрессия. Этим термином обозначают процесс малигнизации до того доброкачественной опухоли. Полагают, что в его основе лежит дальнейшая трансформация генетического материала клеток.

4.Механизмы действия

Как сказано выше, к числу канцерогенов в настоящее время причисляют любое вещество, которое ускоряет развитие опухолей или увеличивает частоту появления новообразований в популяции. В этой связи канцерогенами, в широком смысле слова, являются и инициаторы и промоторы опухолевого роста, а следовательно и механизмы канцерогенного действия веществ чрезвычайно разнообразны. По современным представлениям, следует выделять генетические и эпигенетические механизмы химического канцерогенеза. Вещества, действующие на геном клетки называются "генотоксическими агентами", вещества провоцирующие опухолевый рост через иные механизмы - "эпигенетическими агентами". К числу эпигенетических эффектов следует отнести повреждение механизмов генной экспрессии, иммуносупрессию (см. раздел "Иммунотоксичность"), нарушение гормонального баланса и др. (см. таблицу 3).

Таблица 3. Некоторые примеры генотоксических и эпигенотоксических канцерогенов

Генотоксические канцерогены

Алкилирующие агены

Бенз(а)пирен

Винилхлоид

Диметилнитрозамин

Мышьяк, никель, хром

Радиация

Эпигенотоксические канцерогены

Асбест

Эстрогены, андрогены

Эфиры форбола

Желчные кислоты

Хлорорганические соединения

Сахарин

Для многих канцерогенов, действующих на геном клетки, первичной мишенью является молекула ДНК (см. раздел "мутагенез"). В этой связи проводятся исследования по детализации механизмов взаимодействия потенциальных канцерогенов с нуклеотидами, их идентификации, характеристике формирующихся связей. У человека пока не доказана возможность канцерогенного действия веществ, не способных образовывать ковалентные связи с ДНК. Но у бактерий и обратимое связывание ксенобиотика вызывает мутации, что заставляет предположить, что значительно больший круг веществ, чем принято считать, может инициировать опухолевый рост.

В пользу того, что молекула ДНК является критической структурой канцерогенеза, говорят следующие факты:

-нарушения хромосомного аппарата клеток (мутации) выявляется при большинстве новообразований;

-большинству раков сопутствует нарушение процесса генной экспрессии;

-в основе развития многих опухолей лежит активация онкогенов;

-неоплазма самораспространяющийся процесс, т.е. раки формируются на клеточном уровне;

-некоторые нарушения генома предрасполагают к развитию новообразований;

-экспериментально доказано, что канцерогены образуют ковалентные связи с молекулой ДНК;

- нарушение механизмов репарации ДНК предрасполагает к канцерогенезу.

Определенные гены нормальных клеток обладают особой чувствительностью к действию химических канцерогенов. Это так называемые онкогены. По-видимому, их функция состоит в регуляции клеточного роста и дифференциации клеток. Химические мутации именно этих генов активно трансформируют клетку в сторону неопластических процессов. Механизмы такой трансформации до конца не выяснены. Полагают, что в основе процесса лежит синтез особых протеинов (или полипептидов), содержание которых в клетке оказывается критичным для инициации их роста и размножения. Видимо, функции этих белков связаны с механизмами передачи и восприятия многочисленных регуляторных сигналов, управляющих процессами роста и размножения клеток. К числу таких протеинов, в частности, могут быть отнесены: цитокины, белки-рецепторы цитокинов, факторы клеточного роста, рецепторы факторов клеточного роста, ГТФ-связывающие протеины, тирозинкиназы, серин/треонин киназы, ДНКсвязываемые протеины и т.д.

В клетках существуют гены, ответственные за синтез белков, и так называемые генысупрессоры клеточного роста. Если ген-супрессор мутировал, то в клетке не синтезируются белки, тормозящие её размножение, создаются условия для канцерогенеза. Наиболее изученным геном-супрессором является ген р53. Белок, синтез которого управляется данным геном, является регулятором других генов, от которых зависит реализация цикла клеточного деления. Мутация гена приводит к дефициту белка и клетка утрачивает способность блокировать процесс пролиферации.

Механизмы репарации генома замещают повреждённый участок молекулы ДНК с восстановлением её нормальных функций, поэтому далеко не любое взаимодействие нуклеиновой кислоты и ксенобиотика завершается канцерогенезом. Механизмы репарации многочисленны (см. соответствующие разделы). Идентифицировано более 100 генов, регулирующих процессы репарации. Для того, чтобы оказаться эффективной, репарация должна осуществляться до начала цикла деления поврежденной клетки. Если этого не происходит, нарушения генома наследуется клетками следующих поколений (закрепляются). Таким образом, вещества повреждающие процессы репарации не могут инициировать канцерогенез, но в состоянии значительно влиять на вероятность неопластических трансформаций. Особенно чувствительна молекула ДНК к действию токсикантов в период активации репродуктивных процессов в клетке. В это время наиболее вероятно формирование точечных мутаций, транспозиции генов, других генетических нарушений. С повреждающим действием химических канцерогенов на генетический аппарат клетки можно связать длительный временной интервал между действием канцерогена и манифестацией опухолевого роста.

Взаимодействие ксенобиотиков с протеинами, регулирующими экспрессию генов, также может сопровождаться трансформацией клетки. Репродукция повреждённых и трансформировавшихся клеток приводит к пренеопластическим состояниям, которые в ряде случаев выявляются даже клинически.

Помимо непосредственного действия канцерогенов на молекулы-мишени возможен еще один механизм их повреждения, это активация образования свободных радикалов в клетках организма. Косвенным доказательством значения свободнорадикального механизма в канцерогенезе является, показанная в эксперименте, способность антиоксидантов подавлять химический канцерогенез.

5.Коканцерогены

Коканцерогенами называются вещества, которые существенно увеличивают вероятность формирования новообразований, действуя на организм или совместно с канцерогенами, или до него. Промоторы отличаются от коканцерогенов тем, что реализуют эффект лишь при действии после инициатора опухолевого роста. В качестве коканцерогенов могут выступать гормоны, иммуномодуляторы, факторы питания и т.д. Возможные механизмы коканцерогенной активности представлены на таблице 4.

Таблица 4. Предполагаемы механизмы коканцерогенеза

-Увеличение скорости и объема захвата канцерогенов клетками

-Интенсификация процессов биоактивации проканцерогенов в организме

-Подавление процессов биологической детоксикации канцерогенов

-Угнетение механизмов репарации поврежденной ДНК

-Усиление процессов превращения повреждений ДНК в перманентное состояние

Действие некоторых коканцерогенов является доказанным в эксперименте. Например, пыль диоксида кремния является коканцерогеном бенз(а)пирена, вызывающего карциному гортани, трахеи, легких у экспериментальных животных.

Вещества, содержащиеся в табачном дыму, являются коканцерогенами асбеста. Так, у рабочих профессионально контактирующих с асбестом частота смертей от рака легких в пять раз выше, чем у лиц контрольной группы (не контактируют с асбестом; не курят). У курильщиков частота злокачественных заболеваний легких в 11 раз выше. У курящих рабочих асбестовых предприятий частота новообразований в 55 раз больше, чем у лиц контрольной группы. Хотя табачный дым содержит незначительное количество генотоксических канцерогенов, таких как полиароматические углеводороды и нитрозамины, в его составе обнаруживается целый ряд коканцерогенов и промотеров в форме катехолов и фенольных соединений, играющих большую роль в канцерогенезе у курильщиков.

Важную роль в модуляции канцерогенеза играют гормоны. Так, крысы самцы значительно более чувствительны к канцерогенному действию 2-ацетаминофлюорена (рисунок 4), чем самки. Введение самцам эстрадиола снижает их чувствительность к канцерогену.

Рисунок 4. Структура 2-ацетиламинофлюорена

6.Метаболизм и биоактивация канцерогенов

Большое значение для развития опухолевого роста при действии ксенобиотиков имеют особенности их метаболизма (рисунок 5).

Рисунок 5. Роль цитохрома Р450 в процессах химического канцерогенеза

Общим свойством многих канцерогенов является их способность к биотрансфомации с образованием высоко реакционноспособных соединений, активно взаимодействующих с макромолекулами. Реактивные метаболиты являются сильными электрофилами. Они неэнзиматически взаимодействуют с большим числом нуклеофильных сайтов клеточных макромолекул (пептидов, протеинов, РНК, ДНК и т.д.), образуя с ними ковалентные связи. Основным местом связывания являются белки. Так, в результате действия на организм азокрасителей их метаболиты оказываются ковалентно связанными с белками гепатоцитов. Метаболиты бенз(а)пирена образуют ковалентные связи с белками клеток кожи и т.д. Однако ДНК также является мишенью воздействия реактивных метаболитов в этих органах. Более того, установлено, что большинство "исходных" соединений канцерогенной активностью не обладает. Это позволило Elizabet и Miller ввести в практику такие термины, как "проканцероген"

и "полный канцероген". Вещества, приобретающие свойства канцерогенов в процессе

метаболизма, называются проканцерогенами. Химические вещества, непосредственно взаимодействующие со структурными элементами клетки и вызывающие тем самым ее трансформацию, называются полными канцерогенами.

Ряд веществ изначально обладают свойствами полных канцерогенов. Это активные в химическом отношении молекулы или вещества, приобретающие свойства сильных электрофилов в результате неэнзиматических превращений (рисунок 6). Как правило, непосредственно действующие канцерогены вызывают опухоли тканей на месте аппликации (кожи, дыхательных путей, желудочно-кишечного тракта).

Рисунок 6. Структура некоторых первичных, полных канцерогенов

Метаболизм проканцерогенов и их биоактивация осуществляется в тех же органах и с помощью тех же механизмов, что и других ксенобиотиков (см. раздел "Метаболизм чужеродных соединений"). Естественно в организме животных разных видов скорость и характер биопревращений существенно различаются. Сказанное позволяют объяснить выраженные видовые различия в чувствительности к канцерогенам.

Существует и еще один аспект этого явления. Как хорошо известно в ходе метаболизма ксенобиотиков активируются процессы перекисного окисления липидов и образования вторичных активных радикалов, что также может иметь значение в инициации канцерогенеза (см. выше).

7.Краткая характеристика токсикантов

7.1. Бензол

Бензол является исходным продуктом синтеза большого количества веществ и входит в первую десятку наиболее потребляемых промышленностью соединений.

Это бесцветная летучая жидкость со своеобразным ароматическим запахом; температура кипения около 800, давление пара 100 мм Hg. Легко воспламеняется. Вещество ограниченно растворяется в воде (1 : 1420), но хорошо смешивается с маслами и спиртами. Впервые описано Фарадеем в 1825 году. Промышленное производство налажено в 1849 году.

Впервые случаи лейкозов, обусловленные действием бензола, описаны в 1897 году (Le Noir, Claud, 1897). Однако процент заболеваний, индуцированных веществом, в сравнении с общим количеством лейкемий был невелик. Повышение значения этого феномена связано с широким распространением бензола в современных технологических процессах. Анализ показывает, что многие вещества, угнетающие костный мозг, могут одновременно вызывать и лейкемии. В 60-е годы было отмечено существенное увеличение числа лейкемий у турецких рабочих, занятых в обувной и кожевенной промышленности и контактировавших с клеящими материалами на основе бензола. Публикация этих данных и сообщение об аналогичных наблюдениях на итальянских предприятиях, послужили поводом проведения серьёзных токсикоэпидемиологических исследований среди лиц, контактирующих с бензолом. В ходе этих исследований удалось подтвердить лейкемогенное действие бензола.

Помимо производства бензол оказывает действие на человека и через окружающую среду. Бензол нередко выделяется при горении различных веществ и является составной частью дыма при пожарах, сигаретного дыма, выхлопных газов. Содержание его в бензине от 0,5 до 2%. Бензол - естественный компонент овощей, фруктов, мяса, яиц. Содержание его в продуктах питания от 2 до 2100 мкг/ кг. Вещество не способно к материальной кумуляции и потому его экологическое значение определяется количеством потребляемых продуктов, содержащих это соединение. С позиций концепции пороговости в действии токсикантов на организм значение бензола, как экологического фактора, ничтожно. Если допустить беспороговый характер действия вещества, хотя бы по способности вызывать лейкемию, можно говорить о некоторой его опасности, как "средового" фактора.

Спорным остаётся вопрос о вредном действии бензола, как компонента табачного дыма (последний содержит массу других токсичных веществ, среди которых: полиароматические углеводороды, 1,3-бутадиен и т.д.). Курильщик, в среднем, в сутки потребляет примерно в 10 раз больше бензола (1800 мкг/ день для выкуривающего пачку сигарет), чем некурящий. Однако, если основываться на пороговости в действии токсиканта, это количество составляет ничтожную часть от дозы, вызывающей токсический эффект.

В настоящее время представления о пороговости лейкемогенного действия бензола не однозначны. По мнению ряда специалистов, способность вещества вызывать лейкемии носит стохастический беспороговый характер. При этом полагают, что кумуляция эффекта и развитие лейкемии могут произойти не зависимо от действующей концентрации токсиканта. Риск развития лейкемии от контакта с веществом в той или иной дозе устанавливается путем экстраполяции данных, получаемых при действии высоких концентраций бензола, к условиям контакта с малыми дозами вещества (см. ниже).

Согласно другой точке зрения, порог лейкемогенного действия существует. В этой связи контакт с веществом в малых концентрациях объявляется неопасным. Накопилось немало клинических и экспериментальных данных, подтверждающих эту точку зрения. Показана высокая степень корреляции между возникновением лейкемии и наличием в анамнезе данных об интоксикации бензолом, проявившимся нарушениями со стороны системы крови. В многочисленных работах описаны случаи перерастания панцитопении, угнетения костного мозга, его гипоплазии и апластической анемии, вызванных бензолом, в острый миелоидный лейкоз. С другой стороны, практически отсутствуют описания случаев лейкемий, вызванных бензолом, без предшествовавшего им этапа (в анамнезе) панцитопении. Вместе с тем хорошо известно, что у лиц, перенёсших лучевую или химеотерапию по поводу новообразований, изменения со стороны костного мозга регистрируются в течение длительного времени, иногда годами после полной нормализации показателей периферической крови. Из этого следует, что нормальные показатели крови у лиц, контактирующих (контактировавших) с бензолом, ещё не являются свидетельством отсутствия его пагубного действия на организм.

Каким образом токсическое действие бензола перерастает в лейкемогенное остаётся неясным.

Как следует из имеющихся (порой противоречивых и не всегда в полной мере доказанных) наблюдений, наиболее частым типом лейкемий, вызываемых бензолом, являются острые миелоидные лейкозы (ОМЛ), особенно острая миелобластная лейкемия, мономиелоцитарная лейкемия и эритролейкемия. При диагностике последней формы следует проводить дифференциальный диагноз с компенсаторной эритроидной гиперплазией. Другие типы лейкемий встречаются при действии бензола значительно реже.

Не выяснен и механизм формирования лейкемии. Вероятными механизмами действия бензола могут быть мутации, возникающие либо в результате образования ДНК-аддуктов, либо хромосомной делеции или анеуплоидии вследствие нарушения процесса редубликации нитей ДНК и их распределения между дочерними клетками в процессе митоза. Строение бензола, его метаболитов и их химическая активность делают более вероятным второй механизм действия токсиканта. Так, в отличии от активных алкилирующих агентов бензол и его метаболиты не являются цикло-неспецифичными мутагенами или тератогенами. Не смотря на целенаправленные поиски, в клетках костного мозга отравленных не удалось обнаружить бензольных аддуктов ДНК. С другой стороны, установлена способность бензола блокировать клеточное деление на стадии G2/ М митоза, угнетая процесс формирования клеточного веретена (объясняют действием метаболитов бензола на сульфгидрильные группы тубулина).

У рабочих, хронически подвергающихся действию бензола, обнаружено увеличение числа хромосомных аберраций, в частности, количества анеуплоидных клеток.

7.2. 1,3-бутадиен

1,3-бутадиен - бесцветный газ, используемый в производстве резины. Ранние исследования, выполненные на экспериментальных животных, указывали на малую токсичность вещества как при остром, так и хроническом введении. Эпидемиологические исследования, выполненные в последние годы, напротив, установили очевидную причинно-следственную связь между хроническим воздействием токсиканта и нарушениями здоровья, в частности увеличением

частоты новообразований. Сообщается о способности вещества инициировать лейкемии, однако только у лиц кратковременно контактирующих с бутадиеном.

В эксперименте показана высокая степень видовых различий в чувствительности животных к канцерогенному действию вещества. Крысы - относительно малочувствительный вид. Напротив, подострое действие токсиканта на мышей приводит к развитию мегалобластической анемии; хроническое воздействие - сопровождается увеличением более чем на 60% частоты случаев лимфоидной лейкемии в популяции подопытных мышей. В последние годы этот мощный эффект объясняют сочетанным действием бутадиена и ретровирусов, инфицирующих животных.

8.Выявление канцерогенной активности веществ

Вывод о канцерогенной активности того или иного вещества основывается на результатах двух видов исследований. Во-первых, это эксперименты на различных биологических объектах и лабораторных животных. Во-вторых - данные эпидемиологического обследования групп лиц, контактирующих или контактировавших с токсикантами.

8.1. Экспериментальная оценка

Экспериментальная оценка канцерогенной активности вещества - сложное многоэтапное исследование. Как правило, оно выполняется в опытах in vitro и in vivo в ходе подострого или хронического эксперимента на нескольких видах лабораторных животных (таблица 5).

Таблица 5. Протокол изучения канцерогенной активности вещества

А. Оценка химического строения вещества

Б. Исследования в опытах in vitro

1.Мутагенная активность (см. "Мутагенез");

2.Влияние на процессы репарации ДНК;

3.Изучение клеточной трансформации.

Оценка результатов и выбор условий дальнейшей работы

В. Исследования в опытах in vivo:

1.Индукция опухолей кожи у мышей;

2.Индукция опухолей легких у мышей;

3.Индукция опухолей молочной железы у мышей;

4.Индукция опухолей других внутренних органов у грызунов;

5.Оценка действия промоторов.

Оценка результатов и выбор условий дальнейшей работы

Г. Хронические исследования на животных разных видов.

Оценка результатов

Общее заключение

Исследование предполагает выявление мутагенной, тератогенной активности у веществ (см. соответствующие разделы), которые могут косвенно указывать на возможность его канцерогенности.

Изучение канцерогенной активности в хроническом эксперименте предполагает длительное (1,5 - 2 года) введение веществ лабораторным животным (грызуны, собаки, приматы и т.д.) с водой, пищей, ингалируемым воздухом. Испытываемые количества: 1,0 - 0,5 максимально переносимой дозы (МПД). Под максимально переносимой дозой понимают количество вещества, вызывающее не более чем 10% снижение веса животных (в сравнении с контролем), не вызывающее летальности в группе, клинических и патологических изменений, сокращающих среднюю продолжительность жизни. Животные содержатся в строго контролируемых условиях. Поскольку онкогенный потенциал химических веществ колеблется в очень широких пределах, большие требования предъявляют к чистоте исследуемых токсикантов. В случае наличия примесей, именно они, а не обследуемое вещество, могут стать причиной появления положительных результатов при тестировании.

Все погибшие за период исследований животные изучаются на предмет наличия опухолей. Часть животных, кроме того, умерщвляется через фиксированные интервалы времени (6, 12, 18 месяцев) для гистологических исследований органов и тканей. Все животные умерщвляются и обследуются по завершении эксперимента. Особое внимание уделяют изучению органов, чувствительность которых к токсиканту удалось выявить в ходе предварительных экспериментов. Большие трудности связаны с необходимостью получения статистически значимых различий частот спонтанного появления опухолей в контрольных группах и индуцированного роста, в группе получающих вещество животных. Как правило, для этого требуется включение в эксперимент большого числа животных. Обычно по 50 грызунов обоего пола в группе, т.е. минимум 300 животных: 50 самцов и 50 самок - 1,0 МПД; 50 самцов и 50 самок - 0,5 МПД и, соответственно, 100 животных в контроле. Нередко этого оказывается недостаточно, и результаты получаются малоубедительными, вызывающими сомнение. В таких ситуациях приходится либо значительно увеличивать число животных в группах сравнения, либо использовать в эксперименте более высокие дозы токсикантов.

В процессе работы оценивается видовая чувствительность к предполагаемому канцерогену, тип опухолевого роста, факторы, влияющие на канцерогенез (по возможности). Необходимо учитывать, что разные вещества могут вызвать образование опухоли одного и того же типа, и, напротив, одно и то же вещество может провоцировать развитие разных опухолей. При этом возможны 4 варианта эффектов:

-увеличение частоты "обычно" встречающихся опухолей;

-появление опухолей "нового" типа;

-новое сочетание опухолей;

-сокращение сроков развития опухоли.

Детальное описание методов выявления канцерогенной активности можно найти в специальной литературе.

Канцерогенная активность различных веществ, выявляемая в эксперименте, колеблется в широких пределах (рисунок 7).