Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Основы токсикологии

.pdf
Скачиваний:
152
Добавлен:
13.02.2016
Размер:
8.39 Mб
Скачать

Слабые органические кислоты и основания способны к реакции диссоциации, т.е. образованию ионов, в водной среде. Причем недиссоциированные и, следовательно, незаряженные молекулы таких веществ проникают через липидные мембраны и поры в соответствии с величиной коэффициента распределения в системе масло/вода, диссоциировавшие же молекулы через липидный бислой и поры не диффундируют. Для проницаемости подобных веществ большое значение имеет величина их рКа, определяющая, какая часть растворенного вещества будет находиться в ионизированной и неионизированной форме при данных значениях рН среды. рКа представляет собой отрицательный логарифм константы диссоциации слабых кислот и оснований, и численно равна рН, при котором 50% вещества находится в ионизированной форме. Степень диссоциации вещества может быть рассчитана по формулам:

Log(неиониз.форма)/(ионизир.форма) = рКа - рН (для слабых кислот)

Log(ионизир.форма)/(неиониз.форма) = рКа - рН (для слабых оснований)

Кислая среда способствует превращению слабых кислот (RCOOH RCOO- + Н+) в неионизированную форму, и наоборот, щелочная (рН больше рКа) - в ионизированную. Для слабых оснований (RNH2 + H+ RNH3+) справедлива обратная зависимость: уменьшение рН (увеличение концентрации водородных ионов в среде) способствует превращению веществ в ионизированную форму.

Различия в значениях рН по обе стороны биологической мембраны существенно влияют на процессы резорбции, являются причиной неравномерного распределения веществ в организме. Значения рН плазмы крови и различных тканей не одинаковы (таблица 3).

Таблица 3. Значения рН различных жидкостей организма человека

Орган или жидкость

 

значение рН

 

Кровь

 

7,36

 

 

Слюна

 

5,4

-

6,7

Желудочный

сок

1,3

-

1,8

Панкреатический

сок

8,3

 

 

Двенадцатиперстная кишка

7,0

-

7,8

Тонкая

кишка

6,2

-

7,3

Молоко

 

6,4

-

6,7

Моча

 

4,8

-

7,4

Пот

 

4,0

-

8,0

Ликвор

 

7,5

 

 

Мышечная

ткань

6,7

-

6,8

Связки

 

7,2

 

 

Почки

 

6,6

-

6,9

Протоплазма клеток

 

6,4 - 7,0

 

2.4. Межклеточный транспорт химических веществ

Через специальные каналы, так называемые коннексоны, возможен обмен между контактирующими друг с другом клетками веществами с молекулярной массой до 1000 дальтон (ионами, аминокислотами, сахарами, нуклеотидами). Коннексоны представляют собой белковые образования, состоящие из 6 субъединиц в каждой из контактирующих мембран. Диаметр поры коннексона в зависимости от концентрации Ca2+ в окружающей среде изменяется в интервале от 0 до 2 нм. Через коннексоны возможно проникновение в клетку и токсических веществ. В настоящее время коннексоны обнаружены во всех тканях организма млекопитающих и человека за исключением мышечной и нервной.

2.5. Диффузия растворенных газов

Благодаря малым размерам молекул, газы в биологических средах диффундируют с относительно высокой скоростью. Они хорошо проникают из окружающей среды в кровь, а затем из крови в ткани. Это справедливо не только для веществ, участвующих в процессе

дыхания (кислород, диоксид углерода), но и для подавляющего большинства газообразных токсикантов.

Количество газа, растворенного в жидкости, определяется:

1.Величиной его парциального давления в газовой смеси над жидкостью;

2.Свойствами жидкости;

3.Температурой.

Количество газа (объем), растворяющегося в единице объема жидкости при стандартных условиях и значении его парциального давления 1 атм, характеризуется коэффициентом поглощения (абсорбции) Бунзена ( ). С повышением температуры понижается. Понижение значения коэффициента Бунзена отмечается также при повышении ионной силы раствора (все биологические жидкости в сравнении с водой).

Поскольку величина коэффициента диффузии для различных газов практически одинакова, их накопление в тканях, определяется парциальным давлением и растворимостью в биологических жидкостях. В таблице 4 представлены значения коэффициентов для некоторых газов. Обращает на себя внимание высокая растворимость аммиака и низкая таких газов, как кислород, азот и т.д. В целом прослеживается следующая закономерность - чем лучше растворяется газ в воде, тем большая его часть, при ингаляции, связывается верхними дыхательными путями, легочной тканью, и тем меньшая проникает во внутренние среды организма. В этой связи аммиак, при ингаляции, будет оказывать преимущественно местное действие на верхние отделы дыхательных путей, сероводород - не только местное раздражающее, но и резорбтивное действие, оксид углерода - только системное действие.

Таблица 4. Коэффициенты поглощения Бунзена для ряда газов в воде (20оС)

ГАЗ

 

20

Азот

 

0,015

Водород

 

0,018

Оксид

углерода

0,023

Кислород

0,031

Этилен

 

0,122

Оксид

азота

0,629

Диоксид углерода

0,879

Ацетилен

1,030

Сероводород

2,583

Аммиак

 

702,0

Биологически значимы различия в абсорбционной способности СО2 и О2. При физиологических условиях ткани лучше отдают диоксид углерода, чем поглощают кислород. В этой связи обмен веществ в клетках в значительно большей степени лимитирован скоростью проникновения в ткани О2, чем высвобождением ими СО2. Различия в способности этих газов растворяться в жидкостях, важны и при формировании токсического отека легких, вызванного ингаляцией некоторых токсикантов, например хлора или фосгена. При накоплении отечной жидкости в альвеолах увеличивается толщина барьера, отделяющего кровь от воздуха. Вследствие существенных различий в способности кислорода и диоксида углерода растворяться в жидкостях, для О2 отечная жидкость, инфильтрирующая альвеолярно-капиллярный барьер, представляет плохо преодолеваемую преграду, для СО2 - нет. В результате, на фоне токсического отека легких развивается гипоксия при нормальном содержании (или даже пониженном) СО2. Поскольку углекислый газ является стимулятором дыхательного центра, его недостаток в крови усугубляет и без того тяжелое состояние отравленного. Методом повышения содержания О2 в крови является увеличение его парциального давления во вдыхаемом воздухе.

3. Осмос

Осмос - процесс перемещения растворителя через мембрану, не проницаемую для растворенного вещества, в сторону его более высокой концентрации.

Биологические жидкости представляют собой многокомпонентные растворы, в которых осмотическое давление всех растворенных частиц пропорционально их общей концентрации. При интоксикациях осмотическое давление внутри и вне клеток за счет попадания во внутреннюю среду молекул токсикантов практически не изменяется. Тем не менее это явление имеет определенное токсикологическое значение.

Клетки организма ведут себя, как осмометр, снабженный полупроницаемой мембраной. Если они взаимодействуют с гипоосматической средой, внутрь клеток поступает вода. В результате увеличивается их объем. При значительном увеличении объема клеточная мембрана разрушается, клеточное содержимое выходит в среду. Это явления называется цитолизом (для эритроцитов - гемолизом). Вещества, нарушающие эластичность биологических мембран (мышьяковистый водород, сурьмянистый водород и др.), снижают резистентность клеток к колебаниям осмотического давления среды и вызывает гемолиз. Реакция антиген-антитело может приводить к существенному изменению проницаемости клеточных мембран, а это в свою очередь также становится причиной лизиса клеток. В гиперосмотической среде клетки отдают воду, и объем их уменьшается (в крови появляются "звездчатые" эритроциты).

В целом явление осмоса оказывает несущественное влияние на токсикокинетические характеристики ксенобиотиков. Однако при назначении осмотических диуретиков удается существенно повысить интенсивность процесса отделения мочи путем увеличения осмотического давления жидкости внутри почечных канальцев, и затруднения тем самым реабсорбции воды. В этих условиях ускоряется процесс элиминации выделяемых через почки некоторых ксенобиотиков и продуктов их метаболизма.

4. Фильтрация

Под фильтрацией понимают процесс просачивания жидкости с растворенными в ней молекулами веществ под действием механической силы (гидростатическое, осмотическое давление) через пористые мембраны, задерживающие крупнодисперсные частицы. Размер фильтруемых частиц определяется размерами пор мембраны. Поскольку диаметр пор биологических мембран мал, в организме путем фильтрации разделяются не только грубодисперсные "частицы" (клетки крови), но и растворенные в биологических жидкостях молекулы (ультрафильтрация).

Скорость фильтрации или объем жидкости, проходящий через пористую мембрану за единицу времени зависит от:

1.Различия гидростатического давления по обе стороны мембраны, т.е. градиента давления;

2.Вязкости жидкости, которая в свою очередь, зависит от температуры;

3.Проницаемости мембраны, которая определяется размерами пор, их числом, структурой, особенностями взаимодействия стенки мембраны с жидкостью;

4.Площади фильтрующей поверхности.

На скорость фильтрации ксенобиотиков в органах, кроме того, влияют дополнительные факторы:

1.Детерминированные свойствами организма: давление крови, количество функционирующих фильтрующих образований (капилляров, почечных клубочков и т.д.);

2.Обусловленные свойствами веществ: размеры и форма молекул, особенности взаимодействия с порами.

Фильтрация осуществляется главным образом в капиллярном отделе кровеносного русла: капилляры проницаемы для низкомолекулярных веществ. На принципе фильтрации основана

работа гломерулярного аппарата почек, в котором происходит образование первичной мочи. Путем фильтрации из организма выделяется подавляющее большинство ксенобиотиков.

4.1. Капиллярная фильтрация

На распределение жидкости между интра- и экстравазальным пространствами тканей влияют следующие факторы:

-давление крови в капиллярном русле (рк);

-давление жидкости вне капиллярного русла (ртк);

-колоидосмотическое давление крови ( к);

-колоидосмотическое давление тканевой жидкости ( тк).

Результирующее давление определяется как:

Рэф = рк - ртк - к + тк

На рисунке 4 схематично представлен обмен жидкостью между капиллярным руслом и тканями. Давление крови в артериальном отделе капилляра составляет около 32 мм Hg, в венозном - 17 мм Hg, давление тканевой жидкости - 3 мм Hg. Колоидосмотическое давление крови равно 25 мм Hg и тканевой жидкости - 5 мм Hg. Следовательно, эффективное давление в артериальном отделе капилляра составляет около +9 мм Hg, в венозном - -6 мм Hg. Это означает, что в артериальном отделе капилляра происходит фильтрация, а в венозном - реабсорбция жидкости. В итоге, движение жидкости через стенку сосуда зависит от разницы р - , а 90% отфильтрованной в артериальной части капилляра жидкости возвращается в венозном отделе обратно в капиллярное русло. Абсорбция не реабсорбировавшихся 10% жидкости удаляется из тканей по лимфатическим сосудам.

Из этого следует, что при введении веществ непосредственно в кровь, они активно фильтруются в ткани, и наоборот, вещества попадающие в межклеточное пространство, например при подкожном или накожном введении - активно абсорбируются в кровяное русло. В основе действия веществ, усиливающих или блокирующих проницаемость капилляров, лежит не только способность изменять размеры и количество пор в стенке сосуда, но и влияние на диаметр капилляров в артериальном и венозном отделах, т.е внутрикапиллярное давление.

Рисунок 4. Обмен жидкости между капилляром и окружающей тканью

5. Специфический транспорт веществ через биологические барьеры

Хорошая проницаемость ряда биологических барьеров для нерастворимых в липидах веществ объясняется наличием транспортных систем (транслоказ, транспортных белков и т.д.), которые осуществляют их специфический перенос через мембраны.

Эволюционно специфический транспорт возник из физиологических процессов переноса через мембраны относительно простых, жизненно необходимых клетке молекул, например глюкозы, аминокислот и т.д. Для транспорта токсикантов этот механизм не является ведущим. Тем не менее, путем специфического транспорта в клетку могут поступать токсичные вещества - аналоги естественных метаболитов (например, пуриновых и пиримидиновых оснований, сахаров, аминокислот и т.д.). Специфический транспорт веществ через мембраны напоминает ферментативную реакцию. К числу объединяющих эти явления свойств относятся, в частности, общие закономерности реализации процессов, кинетические характеристики, существенно отличающиеся от кинетики простой диффузии (таблица 5).

Таблица 5. Признаки специфического транспорта

1.Связывание ксенобиотика с наружной поверхностью мембраны и молекулой-носителем;

2.Транслокация связавшегося вещества через мембрану специальным носителем;

3.Высвобождение вещества из связи с носителем внутри клетки;

4.Субстратная специфичность взаимодействия вещества с носителем;

5.Кинетика процесса, описываемая гиперболой (наличие максимальной скорости процесса - Vmax, и константы процесса - Km);

6.Наличие веществ, избирательно блокирующих процесс;

7.Более высокая скорость процесса в сравнении с процессом диффузии.

Некоторые ксенобиотики могут изменять активность и свойства молекул-переносчиков и, тем самым, влиять на течение естественных физиологических процессов. Т.е. механизм токсического действия веществ может быть связан с нарушением свойств молекул переносчиков (атрактилозид - нарушает транспорт АТФ через мембрану митоходнрий).

5.1. Активный транспорт

Активный транспорт - это процесс переноса химических веществ через биологическую мембрану против градиента его концентрации. Процесс всегда сопряжен с расходованием энергии и протекает in vivo в одном направлении. Различают первичный и вторичный активный транспорт.

Первичный активный транспорт - это процесс, при котором энергия макроэргов (АТФ) непосредственно расходуется на перемещение молекулы или иона через мембрану. В

молекулах эукариотов известны, по крайней мере, четыре типа таких процессов, известные, как ионные насосы: Na+/K+ АТФ-аза; Са2+ АТФ-аза; Н++ АТФ-аза; Н+ АТФ-аза.

Вторичный активный транспорт состоит из двух структурно разделенных транспортных механизмов: первичной активно-транспортной системы, например транспорта Na+, нуждающейся в АТФ, и сопряженного процесса каталитической диффузии другого вещества в противоположном направлении, например транспорт сахаров или аминокислот.

5.2. Каталитическая (облегченная) диффузия

Отличие этого процесса от активного транспорта состоит в том, что перенос вещества через мембрану осуществляется по градиенту концентрации. После уравнивания концентрации вещества по обе стороны мембраны процесс транспорта прекращается. В отличие от простой диффузии, облегченная осуществляется с большей скоростью, для нее характерна насыщаемость и структурная специфичность. Этот процесс также связан с расходованием энергии. Процесс поступления глюкозы в эритроциты происходит по этому механизму.

5.3. Транспорт веществ путем образования мембранных везикул

Процесс транспорта веществ через мембраны путем образования везикул, содержащих эти вещества, называется цитозом. На основе данных гистологических исследований выделяют несколько видов цитоза (таблица 6): эндоцитоз, экзоцитоз, трансцитоз, синцитоз, интрацитоз.

Таблица 6. Транспорт веществ путем цитозов

1. Эндоцитозы: захват вещества клеткой

1.1.Фагоцитоз: захват корпускулярных частиц

1.2.Пиноцитоз: захват капель жидкости и растворенных в ней молекул

1.3.Рецептор-обусловленный эндоцитоз: связывание макромолекул на специфических рецепторах клеточной мембраны с последующим образованием шероховатых везикул

2. Экзоцитзы: выделение веществ из клетки

2.1. Гранулокринная секреция: выделение везикул, содержащих клеточное вещество

2.2. Отпочковывание: выделение части цитоплазмы содержащихся в ней веществ путем краевого отделения части клетки

3. Трансцитоз (цитопемзис): транспорт веществ через объем клетки 4. Синцитозы

4.1.Слияние клеток

4.2.Слияние клеток липидными везикулами, содержащими вещества

5. Интрацитоз: образование везикул и их слияние внутри клетки

Путем фагоцитоза клетка захватывает большие частицы или макромолекулярные комплексы. При контакте с клеточной мембраной объект начинает погружаться в клетку, пока полностью не захватывается ею. Отшнуровавшаяся от клеточной мембраны везикула, содержащая частицы, перемещается в цитоплазму. Размеры везикулы и содержащейся в ней частицы могут составлять несколько микрон. Таким способом, например, легочные макрофаги захватывают частицы водо-нерастворимых, чужеродных веществ (металлическая, угольная пыль и т.д.) попавшие в дыхательные пути.

Под пинозитозом понимают захват клеткой капель жидкостей. Капли жидкости, с растворенными в ней веществами, окружаются клеточной мембраной; в результате образуются везикулы с диаметром около 0,1 мкм.

Рецептор-обусловленный эндоцитоз - высоко специфичный транспортный процесс. В качестве рецепторов к веществам выступают ассоциированные с мембранами гликопротеиды со специфичным участком связывания определенного лиганда, например белка. Вследствие специфичности взаимодействия появляется возможность из большого числа протеинов, находящихся в среде выбирать лишь отдельные и обеспечивать их транспорт даже в том случае, если их концентрация низка. Связывание вещества с рецептором побуждает мембрану к образованию везикулы, которая погружается в цитоплазму. После её взаимодействия с мембраной лизосом, везикула разрушается, а содержащийся в ней лиганд, выходит в цитоплазму. Рецептор, связанный с везикулой обратно встраивается в структуру клеточной мембраны, т.е. осуществляется рециркуляция рецептора. В норме путем рецепторобусловленного эндоцитоза в клетку поступают гормоны (например, инсулин) и другие высокомолекулярные вещества, регулирующие её метаболизм, железо, в связанной с трансферином форме и т.д. Этим же способом в клетку проникают некоторые токсины белковой природы, например тетанотоксин, ботулотоксин. Как полагают, в основе токсического действия ботулотоксина лежит его способность повреждать процесс взаимодействия синаптических везикул, содержащих ацетилхолин, с аксолемой, что сопровождается нарушением экзоцитоза нейромедиатора. Токсин действует, попав внутрь нервного окончания, путем рецептор-обусловленного эндоцитоза.

Рецепторы эндоцитоза представляют собой сложные протеины, липофильная часть молекулы которых связана с липидной мембраной, а гидрофильные части обращены внутрь и наружу клетки. Так, рецепторы трансферина представляют собой гликопротеид с молекулярной массой около 180000 Д. Он состоит их двух практически идентичных полипептидных цепей, включающих около 800 аминокислот каждая. Эти цепи связаны дисульфидной связью. Рецепторы имеют высокое сродство к лиганду. Константа диссоциации равна 5 нМ. На поверхности клеток насчитывается до 50000 мест связывания трансферина.

Эндоцитоз представляет собой динамичный процесс. В течение одного часа клетка может путем рецептор-обусловленного эндоцитоза, фаго- и пиноцитоза обновить всю клеточную мембрану. Каким образом, не смотря на постоянное движение частей мембраны между различными органеллами, сохраняется её целостность, остается не известно.

ОГЛАВЛЕНИЕ/ T4 СТАТЬЯ

М а р т, 2 0 0 3 г.

С. А. КУЦЕНКО ОСНОВЫ ТОКСИКОЛОГИИ, Санкт-Петербург, 2002

ГЛАВА 4.2. РЕЗОРБЦИЯ КСЕНОБИОТИКОВ

Термином "резорбция" обозначают процесс проникновения вещества из окружающей среды или ограниченного объема внутренней среды организма в лимфо- и кровоток.

Действие вещества, развивающееся вслед за его резорбцией, называется резорбтивным (системным). Некоторые вещества оказывают действие на месте аппликации, главным

образом на барьерные ткани: кожу, слизистые оболочки, не проникая в кровоток (процесс резорбции отсутствует). Такое действие называется местным. Многие токсиканты способны как к местному, так и резорбтивному действию.

В настоящее время известно, что подавляющее большинство веществ могут проникать в организм через один или несколько тканевых барьеров: кожные покровы, дыхательные пути, желудочно-кишечный тракт, хотя скорость резорбции при этом различна. В зависимости от того, какой из барьеров преодолевает вещество, говорят об ингаляционном, чрезкожном или пероральном пути поступления токсиканта в организм.

Путь проникновения вещества в организм во многом определяется его агрегатным состоянием, локализацией в элементах окружающей среды, площадью и свойствами "входных ворот" (таблица 1). Так, вещество в форме пара имеет очень высокую вероятность резорбироваться в дыхательных путях, но то же вещество, растворенное в воде, сможет попасть во внутренние среды организма преимущественно через желудочно-кишечный тракт и с меньшей вероятностью через кожу.

Таблица 1. Площадь "всасывающих" поверхностей тела человека (м2)

Кожа

 

1,2

-

2

Полость

рта

0,02

 

 

Желудок

 

0,1

-

0,2

Тонкий

кишечник

100

 

 

Толстый кишечник

0,5

-

1,0

Прямая

кишка

0,04

- 0,07

Полость

носа

0,01

 

 

Легкие

 

70

 

 

Способность многих химических веществ переходить из одного агрегатного состояния в другое и локализоваться вследствие этого в разных средах, порой затрудняет предсказание, каким будет основной способ резорбции токсиканта. Например, многие летучие вещества, способные действовать ингаляционно, вместе с тем растворяются и в воде и в продовольствии и, следовательно, могут действовать различными путями (боевые отравляющие вещества: иприт, люизит, зоман; металлы и их соединения и т.д.).

1. Факторы, влияющие на резорбцию

Скорость и характер резорбции веществ определяется рядом факторов (рисунок 1). Их можно отнести к одной из следующих групп:

-обусловленные особенностями организма;

-обусловленные количеством и свойствами апплицируемого вещества;

-обусловленные параметрами среды.

Из-за большого количества влияющих факторов характеристики резорбции конкретного токсиканта колеблются в широких пределах. Если возникает необходимость изучить влияние на процесс какого либо фактора, остальные необходимо строго контролировать, что порой бывает сложно выполнить при проведении исследования, как на человеке, так и экспериментальных животных.

+ Щелкните для загрузки увеличенной копии

(7,29кб, 554x307 GIF)

Рисунок 1. Факторы, влияющие на процессы резорбции

2. Резорбция через кожу

Площадь поверхности кожных покровов взрослого человека составляет в среднем 1,6 м2. Анатомически кожа состоит из нескольких слоев (см раздел "Дерматотоксичность"). С позиций токсикокинетики особый интерес представляет поверхностный роговой слой эпидермиса, препятствующий резорбции многих чужеродных веществ.

Поверхностный слой кожи состоит из ороговевших эпидермоцитов. Его толщина равна 20 - 40 мкм, поверхность покрыта жировой смазкой. В роговом слое содержится 5 - 15% воды. При длительном контакте с водой или водосодержащими средами количество воды в роговом слое увеличивается до 50%, однако, в кровоток вода не проникает. Расстояние, отделяющее роговой слой от капилляров дермального слоя составляет в среднем 0,2 - 0,4 мм. Кожа представляет собой электрически заряженную мембрану. Её наружная поверхность несет отрицательный заряд. В области роста волос, устий сальных и потовых желез целостность рогового слоя нарушается. Здесь же вокруг волосяных фолликулов, сальных и потовых желез локализуется разветвленная сеть капилляров.

Кожа не просто пассивный барьер, отделяющий организм от окружающей среды. Здесь, в эпидермальном слое, осуществляется и метаболизм некоторых ксенобиотиков, хотя общая активность процессов не велика (2 - 6% от метаболической активности печени).

2.1. Способы резорбции

Проникновение веществ через кожу осуществляется тремя путями: через эпидермис, через сальные и потовые железы, через волосяные фолликулы. Для хорошо проникающих через кожу низкомолекулярных и липофильных соединений основным является трансэпидермальный путь, поскольку относительная суммарная площадь поверхности двух других путей мала и составляет менее 1% от общей площади поверхности кожи. Для веществ, медленно всасывающихся через кожные покровы, трансфолликулярный и трансгландулярный пути могут иметь существенное значение. Особенно в начальной стадии пенетрации отмечается значительное накопление липофильных ксенобиотиков в перифолликулярном и перигландулярном пространстве. Однако в дальнейшем прямое проникновение веществ через эпидермоциты приобретает первостепенное значение. Такие хорошо растворяющиеся в жирах вещества как сернистый и азотистый иприты проникают через кожу трансэпидермально.

При трансэпидермальном проникновении веществ возможно как прохождение их непосредственно через клетки, так и через межклеточные пространства.

При рассмотрении процесса прохождения веществ через кожу следует различать собственно резорбцию (проникновение веществ в кровь) и фиксацию токсикантов в кожных покровах.

В силу того, что многие токсиканты проникают через кожу чрезвычайно медленно, орган может выполнять функции своеобразного депо. Развивающиеся эффекты в этом случае формируются постепенно и по прошествии достаточно продолжительного скрытого периода.

2.2 Факторы, влияющие на скорость резорбции

Проникновение ксенобиотиков через кожу представляет собой процесс пассивной диффузии. До настоящего времени не зарегистрировано случаев активного трансдермального транспорта веществ. Резорбция веществ, умеренно растворимых в воде со средней массой молекулы, описывается уравнением Фика. На скорость резорбции влияют многочисленные факторы, среди которых важнейшие:

-площадь и локализация резорбирующей поверхности;

-интенсивность кровоснабжения кожи;

-свойства токсиканта.

При изучении в эксперименте резорбции веществ через кожу всегда сложной представляется задача выбора подходящего экспериментального животного. Кожа человека в наибольшей степени близка, по свойствам, коже приматов и свиньи.

2.2.1. Площадь и область резорбции

Количество вещества, проникающего через кожу, пропорционально площади контакта вещества и кожи. С увеличением площади, увеличивается и количество всасываемого вещества. При действии в форме аэрозоля площадь контакта апплицируемой массы ксенобиотика с кожей увеличивается с уменьшением диаметра частиц, поскольку объем частиц

уменьшается пропорционально уменьшению третей степени их радиуса, а площадь - второй (V r3; S r2).

Анатомическая локализация области контакта с веществом существенно влияет на скорость резорбции (таблица 2). Наибольшей способностью к резорбции обладает кожа мошонки и подмышечной впадины.

Таблица 2. Скорость проникновения паратиона через кожу различных областей тела человека (% резорбировавшегося вещества от нанесенного количества, за 5 суток)

Анатомическая область

 

Количество

Наружная поверхность предплечия

8,6

Волосистая

часть

головы

32,2

Ладонь

 

 

11,8

Коленная

 

область

13,8

Живот

 

 

18,5

Тыл

 

кисти

21,0

Лоб

 

 

36,3

Аксилярная

 

область

64,0

Мошонка

 

 

100

2.2.2. Кровоснабжение

Кровоснабжение кожи слабее многих других органов, например мышц. Площадь сосудистого русла, снабжающего кожу кровью 1 - 2 см2 на 1 см2, а скорость кровотока составляет около 0,05 мл/мин на 1 см2. Вместе с тем скорость кровотока не является лимитирующим фактором проникновения веществ. При активации кровотока несколько усиливается резорбция лишь токсикантов, в принципе способных проникать через кожные покровы. В этой связи, действие таких факторов как раздражающие вещества, ультрафиолетовое облучение, температурное воздействие и т.д., сопровождающееся расширением сосудов, открытием анастомозов, усиливает резорбцию лишь некоторых токсикантов.