Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Основы иммунологии

.pdf
Скачиваний:
1133
Добавлен:
13.02.2016
Размер:
2.17 Mб
Скачать

Сходные процессы происходят в слизистых оболочках. Антигены здесь связываются и обрабатываются макрофагами и местными ДК и представляются Т-лимфоцитам, среди которых многие несут ТКР, тогда как в крови и в других тканях – ТКР. Эти Т-лимфоциты обычно находятся в лимфоидных скоплениях слизистой оболочки и в специализированных структурах – пейеровых бляшках и др. Обычно в процесс вовлекаются регионарные лимфатические узлы, где гиперплазируются фолликулы (В-зоны) и паракортикальные Т- зависимые зоны, а также мозговое вещество (зона макрофагов). Все зоны инфильтрируются лейкоцитами. Под влиянием антигенов, поступающих через приносящие лимфатические сосуды, резко активируются макрофаги, усиливается фагоцитоз. Внутри В- зависимых зон появляются плазматические клетки, а в Т-зонах – иммунные Т-лимфоциты, несущие специфические ТКР.

Т-зависимый иммунный ответ развивается в несколько этапов.

1.Процессинг и презентация АГ.

2.Индуктивная фаза с активацией Т-хелперов 1 и 2 типа.

3.Эффекторная фаза.

Процессинг и презентация АГ.

Если антиген корпускулярный (микроб или другая частица), то он захватывается АПК (в первую очередь – дендритными клетками) и подвергается перевариванию. Белковые фрагменты антигенов гидролизуются до небольших пептидов внутри особого комплекса ферментов-протеаз – протеазомы. Здесь происходит процессинг антигена. Образующиеся антигенные пептиды связываются с HLAантигеном II класса и экспрессируются на мембране АПК для связывания Т-хелперами (представление или презентация АГ).

Аналогичную функцию могут осуществлять В-лимфоциты и фолликулярные дендритные клетки.

Антигены вирусов, внутриклеточных бактерий (хламидий, риккетсий), а также некоторые опухолевые АГ представляются на мембране зараженных клеток в комплексе с HLA-антигеном I класса CD8+ цитотоксическим Т-лимфоцитам (Т-киллерам).

Связывание, процессинг и презентация АГ дендритными клетками играет решающую роль в перенаправлении иммунного ответа либо по клеточному, либо по гуморальному пути. Во многом

51

это определяется типом рецептора из семейства TLR, который связывает данный вид антигена.

В частности, связывание микробных антигенов (в первую очередь – ЛПС грамотрицательных бактерий) с TLR-4 на поверхности дендритных клеток активирует синтез провоспалительных цитокинов данными клетками (ИЛ-1, ИЛ-12, ИЛ-18, ФНО и др.) Это стимулирует клеточно-опосредованный иммунный ответ и воспаление.

И наоборот, связывание других антигенов (липотейхоевых кислот грамположительных бактерий, бактериальных липопротеинов и др.) с TLR-2 ведет к усилению продукции регуляторных цитокинов

– ИЛ-4, ИЛ-10, ИЛ-13 и др. При этом активируется гуморальный иммунитет с усилением продукции антител. Стимуляция гуморального иммунитета наступает и в случае, если в роли АПК выступают В-лимфоциты.

Кроме того, взаимодействие антигенов и АПК через TLR ведет к усилению экспрессии костимулирующих молекул на мембранах дендритных клеток (см. ниже).

Индуктивная фаза с активацией Т-хелперов 1 и 2 типа.

Для стимуляции Тх0 с превращением их в Т-хелперы первого или второго типа необходимо несколько активирующих сигналов.

Антигенный пептид в комплексе с HLA II класса, представленный на мембране АПК, специфически взаимодействует с

Т-клеточным рецептором Тх0 (I сигнал). Со стороны Т-хелпера во взаимодействии участвуют также CD4 и СD3.

Кроме АГ-специфической активации через ТКР важную роль играет костимуляция Т-хелперов дендритными клетками. Она не зависит от специфичности АГ, и в ней участвуют особые

костимуляторные молекулы (II сигнал). Основными такими молекулами на поверхности АПК является CD80/86, а на соответствующем Т-лимфоците – CD28.

Без костимуляции Т-клетка не вступает в пролиферацию и дифференцировку, а иммунный ответ может завершиться супрессией данного клона, т.е. анергией.

Одновременно дендритные клетки выделяют комплекс цитокинов, стимулирующих Тх0 (III сигнал). Как уже упоминалось, продукция цитокинов во многом определяет превращение Тх0 в Тх1 или Тх2.

52

Провоспалительные цитокины ИЛ-1, ИЛ-12, ИЛ-18, ФНО стимулируют образование Тх1. В свою очередь, ИЛ-4, ИЛ-10, ИЛ-13 ведут к образованию Тх2. Особенно вероятно превращение Тх0 в Тх2, если в роли антигенпредставляющей клетки выступает В-лимфоцит, несущий на свое поверхности костимулирующую молекулу CD40.

Тх1 и Тх2 полностью отличаются по спектру выделяемых цитокинов. Это определяет направление, в каком иммунный ответ будет развиваться далее.

Главные цитокины, выделяемые Тх1 – -интерферон, -ФНО, ИЛ-2. Их продукция стимулирует клеточное воспаление.

В свою очередь Тх2 выделяют ИЛ-4, ИЛ-6, ИЛ-10, ИЛ-13, которые стимулируют В-лимфоциты и антителогенез, что приводит к активации гуморальных иммунных реакций.

Эффекторная фаза.

Образующиеся Тх1 через выделение -интерферона усиливают активацию макрофагов, которые в большом количестве выделяют провоспалительные цитокины, в первую очередь ИЛ-1, ИЛ-12 и ФНО. Эти цитокины по механизму положительной обратной связи вновь стимулируют Тх1 и подавляют Тх2. Развивается классическая реакция ГЧЗТ. В свою очередь, увеличение образования ИЛ-2

вовлекает в активацию другие популяции лимфоцитов.

С другой стороны, образующиеся Тх2 активируют В-клетки, выделяя ИЛ-4. Для стимуляции антителогенеза недостаточно выделения факторов роста В-клеток (ИЛ-4 и ИЛ-6). Тх2 прямо взаимодействуют с В-лимфоцитами. Активированные Тх2 экспрессируют лиганд CD40L. Последний взаимодействует с CD40 рецептором на В-клетках и возникает костимуляция этих клеток. В- лимфоциты вступают в бласт-трансформацию, превращаются в плазматические клетки, которые синтезируют антитела.

Кроме того, только после взаимодействия с Тх2 и ИЛ-4 В-клетки способны переключаться с синтеза IgМ на синтез IgG (изотипическое переключение). Цитокины, выделяемые Тх2, через взаимодействие со своими рецепторами стимулируют рекомбинацию генов, кодирующих вариабельные и константные участки цепей ИГ. Кроме того, эти цитокины активируют соматический гипермутагенез в В- лимфоцитах, что приводит к синтезу В-клетками высокоаффинных АТ.

Против

вирусов и

некоторых

внутриклеточных

бактерий

(хламидии,

риккетсии)

иммунитет

развивается иначе.

Антиген,

 

 

 

 

53

экспрессированный на мембране пораженной клетки, активирует CD8(+) цитотоксические Т-лимфоциты, которые имеют к нему соответствующий ТКР. Причем CD8(+) Т-лимфоцит узнает такой антиген лишь в комплексе с молекулами HLA-I класса, которые есть на всех ядросодержащих клетках. По существу Т-лимфоцит узнает измененные антигеном собственные HLA молекулы I класса. После контакта с этим комплексом CD8(+) Т-клетки активируются, делятся,

возникают зрелые цитотоксические Т-клетки-эффекторы, а также

клетки памяти. Т-цитотоксические эффекторы лизируют клетки, несущие вирусный или другой антиген на поверхности, выделяя перфорин и ферменты-гидролазы (гранзимы). Кроме того, Т-киллеры начинают экспрессировать на своей поверхности Fas-лиганд, который, взаимодействуя с CD95 на поверхности клеток-мишеней, вызывает их апоптоз. Также они выделяют гамма-интерферон, который препятствует репликации вирусов и активирует естественные киллеры, которые тоже разрушают инфицированные клетки.

Естественное угнетение иммунного ответа.

На заключительных этапах происходит естественное угнетение и затухание иммунного ответа. Это предупреждает возникновение и развитие аутоиммунных реакций.

Лишь небольшая часть Т- и В-лимфоцитов превращается в покоящиеся высокоаффинные к данному АГ долгоживущие клетки памяти. Подавляющее большинство активных лимфоцитов после удаления АГ быстро инактивируется.

Механизмы ограничения иммунного ответа весьма различны. Во-первых, все выделяемые цитокины действуют только

аутокринно и паракринно и выделяются в пикомолярных концентрациях. Только при тяжелых поражениях они действуют системно, что приводит, например, к эндотоксическому шоку. Обычно же иммунный ответ развивается местно в лимфоидной системе, не затрагивая другие органы и ткани.

Во-вторых, цитокины вступают в сложные перекрестные сетевые взаимодействия со взаимным угнетением. Так, выделение ИЛ-10 подавляет выделение всех типов цитокинов. ИЛ-12 подавляет выделение цитокинов Тх2, блокируя гуморальный иммунитет. В свою очередь, ИЛ-4 блокирует Тх1.

54

В-третьих, при активации Т-клеток происходит смена костимулирующих молекул. Если CD80/86 на поверхности АПК стимулирует активацию Тх через CD28, то в ходе иммунного ответа эти молекулы на АПК меняются на CD152, который вызывает угнетение пролиферации Тх.

Наконец, многие из активированных лимфоцитов, а также плазмоциты на своей поверхности увеличивают экспрессию рецептора апоптоза CD95 Fas/Apo. С другой стороны, некоторая часть Т-клеток начинает экспрессировать Fas-лиганд. Такие Т-клетки взаимодействуют с активированными Т- и В-лимфоцитами за счет CD95 и вызывают их апоптоз. Тем самым они клетки выступают в роли супрессоров.

Регуляция иммунного ответа может осуществляться также и по механизму идиотип-антиидиотипической сети. Сущность его заключается в следующем. К одному и тому же АГ антитела синтезируются различными клонами лимфоцитов. Такие АТ (или, что равнозначно – Т-клеточные рецепторы) будут несколько отличаться по строению друг от друга. В активном центре таких АТ или рецепторов находятся уникальные антигенные детерминанты, присущие только данному клону лимфоцитов и отличающие его от любых других. Они получили название идиотопов. Сам АГсвязывающий участок АТ был назван паратопом. Совокупность всех идиотопов данного антитела получила название идиотипа. При развертывании иммунного ответа первоначально синтезируются АТ первого поколения, направленные к данному АГ. Они получили название идиотипических антител (несущих идиотип). К их активным центрам, в свою очередь, впоследствии вырабатываются АТ второго поколения антиидиотипические. Они блокируют синтез идиотипических АТ. Так осуществляется естественное затухание иммунного ответа, снижающее вероятность развития аутоиммунных процессов. До следующей встречи с АГ информация о нем будет находиться в долгоживущих клонах клеток памяти.

Понятие о первичном и вторичном иммунном ответе

После контакта с антигеном иммунные реакции развиваются через стадии первичного и вторичного иммунного ответа, которые имеют свои особенности.

55

Первичный иммунный ответ развивается после первого контакта иммунной системы с антигеном. Для него характерен латентный период (2-3 дня). Первыми синтезируются IgМ (выявляются через 2-3 суток), а затем IgG (пик – 10-14 сутки и могут сохраняться в низком титре в течение всей жизни). Параллельно отмечается небольшое увеличение уровня IgA, E, D. Образуются комплексы антиген-антитело. Одновременно уже с 3-х суток появляются иммунные Т-лимфоциты. В зависимости от вида антигена преобладают или иммунные Т-лимфоциты, или антитела.

Первичный иммунный ответ затихает через 2-3 недели после стимуляции антигеном. После него обычно остаются лимфоциты памяти и может долго поддерживаться следовой уровень IgG-антител.

В-клетки возникают в зародышевых центрах вторичных лимфоидных фолликулов под влиянием фолликулярных дендритных клеток и не дифференцируются в плазмоциты. Они несут на мембране IgG и IgA, в отличие от обычных В-клеток, имеющих IgM или IgM/IgD. При стимуляции антигеном В-клетки памяти интенсивно мигрируют в костный мозг, где превращаются в плазмоциты, секретирующие антитела.

Плазматические клетки (ПК) ранней фазы иммунного ответа дифференцируются в экстрафолликулярных зонах белой пульпы селезенки, синтезируют низкоаффинные антитела и живут несколько дней. В костном мозге находятся долгоживущие ПК, образующие высокоаффинные антитела.

Вторичный иммунный ответ развивается после повторных контактов системы иммунитета с антигенами. Долгоживущие клоны антигенспецифических Т- и В-лимфоцитов ответственны за «память» об антигене, способны к рециркуляции и находятся не в покое, а в фазе G1. Они несут мембранные антигенспецифические рецепторы: В-клетки преимущественно IgG, реже – IgA или IgE, Т-клетки – ТКР.

При вторичном иммунном ответе за счет клеток памяти стимуляция синтеза антител и иммунных Т-клеток наступает быстро (через 1-3 дня), количество антител резко увеличивается (период полураспада 15 суток). Причем сразу синтезируются IgG-антитела, титры которых во много раз больше, чем при первичном ответе. Возрастает их сродство (аффинность) к антигену. Часть антител связывается с Fc-рецепторами лейкоцитов.

Как правило, иммунный ответ, достигнув своего пика, затихает, супресируется. Основой супрессии служат два фактора: 1) элиминация антигена, или резкое уменьшение его количества и

56

связывание клетками-хранителями (дендритные клетки и др.); 2) включение комплекса специфических супрессорных регуляторных механизмов. Этот супрессорный комплекс объединяет клетки с соответствующими рецепторами и цитокины.

Повторные антигенные стимуляции могут приводить к развитию иммунопатологии: аллергии и аутоиммунным реакциям. При аллергии основные носители «памяти» о предыдущей встрече с аллергеном – IgE+ В-лимфоциты и аллергенспецифичные Т-клетки, а также персистирующие IgE-антитела, обеспечивающие быструю повторную реакцию на новый контакт с аллергеном.

Нервная и эндокринная системы осуществляют регуляцию функций СИ. Гормоны и медиаторы эндокринной и вегетативной нервной системы взаимодействуют с соответствующими рецепторами клеток СИ и усиливают или угнетают их функции. На клетках СИ широко представлены рецепторы для гормонов, медиаторов, нейропептидов. Кортизол, адренокортикотропный гормон, адреналин, андрогены, эстрогены индуцируют апоптоз и подавляют пролиферацию лимфоцитов и иммунный ответ.

Иммунологическая толерантность

Возможны ситуации, когда СИ макроорганизма не способна отвечать на определенные АГ. Такая ее неотвечаемость получила название иммунологической толерантности (толерантность – терпимость, неотвечаемость). Она характеризуется специфическим подавлением иммунного ответа, возникшем после предварительного введения антигена.

Существует врожденная и приобретенная толерантность. К врожденной относится аутотолерантность к собственным клеткам и молекулам. Она нарушается при аутоиммунных реакциях.

Полезные виды толерантности: аутотолерантность, толерантность матери к антигенам плода и полученная к аллергенам при иммунотерапии. Патологический вид – это анергия, неотвечаемость на вирулентные микроорганизмы.

57

ГЛАВА 3. ИММУНИТЕТ И ИНФЕКЦИИ

Взаимодействие между системой иммунитета и микроорганизмом может либо не иметь последствий, либо привести к колонизации им тканей, что проявится широким спектром клинических вариантов инфекционного процесса – от манифестной формы инфекционного заболевания, до бессимптомного микробного носительства

Инфекционные болезни – это обширная группа заболеваний человека, вызываемых патогенными вирусами, бактериями, риккетсиями, грибами и простейшими у чувствительных макроорганизмов. Инфекционные болезни – ведущая причина смертности в мире: ежегодно погибает около 17 млн. человек. Появились новые инфекции – ВИЧ-инфекция, лихорадка Эбола, атипичная пневмония и др. Отмечается активация ранее известных болезней – туберкулеза, гепатитов, малярии в связи с изменчивостью микроорганизмов и модуляцией иммунореактивности людей в сторону повышения их чувствительности.

Следовательно, главной стратегией борьбы с инфекциями в 21-м веке должно быть иммунопрофилактическое повышение популяционной и индивидуальной неспецифической и специфической резистентности – иммунитета у людей.

Противобактериальный иммунитет

Факторы, определяющие форму и тяжесть течения инфекционного процесса, зависят от микроорганизмов (доза, патогенность, вирулентность и т.д.) и от состояния макроорганизма (возраст, общее состояние здоровья, состояние иммунокомпетентных систем и т.д.).

Результатом взаимодействия микробов и макроорганизма может быть нестерильный иммунитет, когда факторы патогенности и иммунитет уравновешены, стерильный иммунитет – освобождение от инфекта и инфекция – размножение вирулентного микроба.

58

Неспецифическая резистентность и местный иммунитет

Возбудители заболеваний часто проникают в организм через слизистые оболочки носа, дыхательных путей, глаз, мочеполовых путей и кишечного тракта. Реже это происходит через кожу, преимущественно при повреждении эпителия.

На пути проникновения микробов находятся местные факторы защиты. Неповрежденные кожа и слизистые оболочки непреодолимы для многих микроорганизмов. Кроме механического барьера, кожа обладает значительными бактерицидными свойствами, которые связаны с выделением молочной и жирных кислот, ферментов, пота, сального секрета и т.д. Слизистые оболочки носоглотки и дыхательных путей обладают выраженными защитными свойствами. Секреты, выделяемые слизистыми, слюнными и пищеварительными железами, не только смывают микроорганизмы с поверхности слизистых оболочек, но и оказывают существенное бактерицидное действие за счет содержащихся в них лизоцима, различных ферментов, кислой среды желудочного содержимого, а также нормальной микрофлоры организма и др.

Нормальная бактериальная флора слизистых оболочек, особенно кишечника, препятствует развитию патогенных микроорганизмов. Ее нарушение при антибиотикотерапии ведет к дисбактериозам и инфекции.

Неспецифическая защита организма в значительной мере контролируетcя генетическими механизмами, которые обеспечивают видовой иммунитет – невосприимчивость организмов одного вида к инфекционным заболеваниям другого вида вследствие исключения возможности размножения возбудителей. Имеются данные о генетически наследуемой невосприимчивости в отдельных популяциях людей к ряду инфекционных заболеваний (малярия, туберкулез, корь, полиомиелит и др.).

Тяжелое течение инфекционного процесса или фатальный для хозяина исход может наблюдаться при снижении уровня неспецифической защиты и иммунологической реактивности хозяина, большой дозе и высокой вирулентности возбудителя, а также при неестественных путях его проникновения. Хронизация инфекционного процесса, как правило, определяется несостоятельностью иммунного ответа к возбудителю. Чувствительность к менингококкам повышена при дефиците терминальных компонентов комплемента, а тяжелое течение

59

менингококковой инфекции ассоциировано с определенным аллотипом Fc RIIa рецептора.

Комплекс факторов естественного врожденного иммунитета

может полностью элиминировать микроорганизмы без развития специфического иммунного ответа. В этот комплекс входят гуморальные факторы: лизоцим, СРБ, маннансвязывающий белок, комплемент (альтернативный путь активации), трансферрин, а также лейкоциты (нейтрофилы, макрофаги), которые выделяют ранние цитокины – ФНО , ИЛ-1, ИНФ и др., активирующие все клетки СИ.

Антитела В1-лимфоцитов серозных полостей – важный фактор естественного иммунитета. Антитела классов IgM и sIgA, образуемые ими, осуществляют врожденный антибактериальный иммунитет, в первую очередь, против бактерий кишечника, а также капсулообразующих микробов (пневмококков, гемофильной палочки). IgM-антитела оказывают комплементзависимую цитотоксичность, а sIgA опсонируют до 90% бактерий тонкого кишечника, препятствуя их адгезии к эпителию. Эти антитела исходно специфичны к распространенным антигенам бактерий: фосфорилхолину, полисахаридам и ЛПС.

-Т-клетки, представляющие врожденный клеточный иммунитет, во многом определяют резистентность мышей к M.tuberculosis, так дефицитные по ним мыши быстро погибают от этой инфекции.

В некоторых ситуациях микроорганизмы персистируют без явного иммунного ответа на фоне полезной ареактивности организма. Однако существуют механизмы, сдерживающие их размножение. К такой ситуации можно отнести бактерионосительство.

Факторы естественного иммунитета служат первым этапом защиты, а затем они включают механизмы адаптивного (приобретенного) иммунитета.

Формирование противобактериального иммунитета

Клетки системы иммунитета (СИ) – макрофаги, Т- и В- лимфоциты, гранулоциты, дендритные – широко представлены в коже и в слизистых оболочках. Часть их (макрофаги, тучные клетки, гранулоциты) находится на эпителии в криптах миндалин, в местах покрытых плоским эпителием (пейеровы бляшки, бронхоассоциированная лимфоидная ткань). Здесь происходит первая

60