Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

ВСЕ О БЕТОНЕ

.docx
Скачиваний:
141
Добавлен:
13.02.2016
Размер:
126.17 Кб
Скачать

ОБЩИЕ СВЕДЕНИЯ О БЕТОНАХ И ИХ КЛАССИФИКЦИЯ

  Бетоном называют искусственный каменный материал, получаемый в результате расширения рационально подобранной, тщательно перемешанной и уплотненной смеси минерального вяжущего вещества, воды, заполнителей и в необходимых случаях специальных добавок. Смесь указанных компонентов до начала ее затвердевания называют бетонной смесью.

  Вяжущее вещество и вода - активные составляющие бетона, которые в смеси обволакивают тонким слоем зерна заполнителя. Со временем вяжущее вещество затвердевает и связывает их, превращая бетонную смесь в прочный монолитный камень - бетон.

  Заполнители (песок, щебень или гравий) занимают до 80 - 85 % объема бетона и образуют его жесткий скелет препятствующий усадке. Применяя заполнители с различными свойствами, можно получать бетоны с разнообразными физико-механическими показателями, например, легкие, жароупорные и пр.

     Классификация бетонов.

  По плотности бетоны подразделяют на:

  1. особо тяжелые - более 2500 кг/мЗ;4

  2. тяжелые - 1800 - 2500 кг/мЗ;

  3. легкие -500 - 1800 кг/мЗ;I

  4. особо легкие (теплоизоляционные) - менее 500 кг/мЗ.

  По виду применяемого вяжущего вещества бетоны разделяют на:

  1. цементные (приготовляемые на клинкерных цементах - портландцементе, шлакопортландцементе, пуццолановом портландцементе и др.);

  2. силикатные автоклавного твердения (на известково-песчаном, известково-шлаковом и других вяжущих);

  3. гипсовые (на гипсовых и гипсоцементно-пуццолановых вяжущих);

  4. асфальтобетоны(на битумном вяжущем);

  5. полимерцементные бетоны и полимербетоны (на синтетических смолах).

  В зависимости от структуры бетоны разделяют на:

  1. бетоны плотной структуры, у которых все пространство между зернами заполнителя занимают затвердевшее вяжущее и поры вовлеченного в него воздуха;

  2. бетоны поризованной структуры, пространство между зернами заполнителя которых заполнено затвердевшим вяжущим и поризованным пено- или газообразователем;

  3. ячеистые бетоны, состоящие из затвердевшего вяжущего и кремнеземистого компонента и пор равномерно распределенных и образованных газо- или пенообразователями;

  4. бетоны крупнопористой структуры, у которых пространство между зернами крупного заполнителя не полностью заполнено мелкими заполнителями и затвердевшими вяжущими.

  По назначению бетоны подразделяют на:

  1. конструкционные - для бетонных и железобетонных несущих конструкций зданий и сооружений (фундаментные блоки, колонны, балки, плиты и др.);

  2. гидротехнические - для возведения плотин, шлюзов, облицовки каналов и др.;

  3. бетон для стен зданий и легких перекрытий,

  4. дорожный - для устройства дорожных и аэродромных покрытий;

  5. специальные - химически стойкие, жаростойкие, декоративные, особотяжелые для биологической защиты, бетонополимеры, полимербетоны и др.

  Материалы для тяжелого бетона

  Цемент. Для тяжелых бетонов рекомендуются следующие марки цементов:

  • Марка бетона М100 М150 М200 МЗОО М400 М500 М600

  • Марка цемента 300  300    400    400    500   500   600

В случаях когда марка цемента выше той, которая рекомендуется для данного бетона, следует применять микронаполнители - измельченные горные породы (известняки, доломиты и др.) или промышленные отходы (доменные и топливные шлаки, золы и др.).

  Вода. Применяют воду, не содержащую вредных примесей (сульфаты, минеральные и органические кислоты, жиры, сахар и др.), препятствующих нормальному схватыванию и твердению бетона. Использовать промышленные, сточные и болотные воды для затворения и поливки бетона не рекомендуется.

  Песок. В качестве мелкого заполнителя для тяжелого бетона используют природный песок крупностью от 0,14 до 5мм.

  Природные пески разделяются наречные, морские и горные (овражные). Речные и морские пески имеют округлую форму зерен; горные содержат остроугольные зерна, что обеспечивает их лучшее сцепление с бетоном. Однако горные пески обычно больше загрязнены вредными примесями, чем речные и морские.

  Искусственные пески получают дроблением твердых и плотных горных пород, а также отвальных металлургических шлаков. Дробленые пески имеют высокую стоимость, и поэтому, их применяют для обогащения мелкого природного песка в бетоне.

  По зерновому составу пески делят на крупные, средние, мелкие и очень мелкие В песке для бетонов и растворов не допускается наличие зерен размером более 10 мм, а зерен размером 5-10 мм не должно быть более 5 % по массе. Количество мелких частиц, прошедших через сито с отверстиями 0,14 мм, не должно превышать 10%.

  Глинистые и пылевидные частицы, органические примеси, сернистые и сернокислые соединения являются вредными примесями в песке. Глинистые и пылевидные частицы увеличивают суммарную поверхность заполнителя, при этом повышается водопотребность бетонной смеси, вследствие чего снижается прочность бетона. Кроме того, глинистые примеси, обволакивая тонким слоем зерна песка, ухудшают сцепление их с цементным камнем и снижают прочность бетона. Органические примеси (остатки растений, перегной и т. п.) снижают прочность цементного камня и могут явиться источником его разрушения. Сернистые и сернокислые соединения (гипс, серный колчедан и др.) способствуют коррозии бетона.

  Крупный заполнитель: для тяжелого бетона это гравии или щебень.

  Гравий - рыхлая смесь зерен округлой формы размером 5-70 мм, образовавшихся в результате естественного разрушения (выветривания) твердых , горных пород. Гравий может быть горным (овражным), речным и морским. Горный гравий имеет шероховатую поверхность и содержит обычно примеси песка, глины, пыли и органических веществ. Речной и морской гравий чище горного, но зато с гладкой поверхностью, что ухудшает сцепление с цементно-песчаным раствором. Для улучшения сцепления его можно дробить на щебень.

  Щебень - рыхлая смесь, получаемая дроблением больших кусков различных твердых горных пород, а также кирпичного боя, шлаков и др. Полученную смесь зерен различных размеров (5 - 70 мм) подвергают рассеву на отдельные фракции. В зависимости от размера зерен гравий и щебень подразделяют на фракции 5-10, 10 - 20, 20 - 40 и 40 –70мм. В каждой фракции гравия или щебня должны быть зерна всех размеров - от наибольшего до наименьшего для данной фракции.

  Для приготовления бетона более экономичен предельно крупный гравий или щебень, так как при этом снижается расход цемента. Но наибольший размер зерен крупного заполнителя должен быть не более 1/3 наименьшего размера бетонируемой конструкции или не более 3/4 наименьшего расстояния между стержнями арматуры. При бетонировании плит допускается применение до 50 % зерен крупного заполнителя наибольшей крупности, равной половине толщины плиты. Содержание зерен крупнее установленного наибольшего размера допускается не более 5% по массе гравия или щебня.

  Содержание в гравии или щебне лещадных или игловидных зерен не должно превышать 15 % по массе.

  Для тяжелых бетонов следует применять щебень, получаемый из горных пород, имеющих прочность в 1,5 - 2 раза выше заданной марки бетона. Содержание в щебне зерен слабых, выветрившихся пород не должно превышать 10%по массе. Проверяется также морозостойкость гравия и щебня. Окончательно пригодность гравия или щебня для бетона требуемой марки устанавливают по результатам испытания бетона на данном заполнителе.

 ОСНОВНЫЕ СВОЙСТВА БЕТОНА

  Прочность при сжатии является основным показателем механических свойств бетона. Она определяется пределом прочности при сжатии стандартных образцов-кубов, изготовленных из данной бетонной смеси и выдержанных до испытания в течение 28 суток в нормальных условиях (при 1=15-20оС и относительной влажности воздуха не менее 90%). По пределу прочности при сжатии для тяжелых бетонов установлены следующие марки: М200, М250, МЗОО, М350, М400, М450, М500, М600, М700, М800.

  При бетонировании ряда конструкций, например, бетонных дорожных покрытий, важно знать прочность бетона при изгибе. Для этого испытывают образцы-балки. Для обычных железобетонных конструкций широко применяют бетон марок М200 и М250, а для предварительно-напряженных железобетонных конструкций - МЗОО-М5ОО. Бетон марок М100 и М150 используют для оснований, фундаментов и других массивных монолитных конструкции.

  Основные факторы, влияющие на прочность бетона - активность цемента и соотношение массы воды и цемента в составе бетонной смеси (водоцементное отношение В/Ц или обратное ему цементоводное отношение - Ц/В). Зависимость прочности обычного бетона от Ц/В и марки цемента в общем виде выражают формулой: Rб = А Rц (Ц/В - 0,5), где Rб - прочность бетона в возрасте 28 сут. при твердении в нормальных условиях, МПа; Rц - активность цемента, МПа; А - коэффициент, учитывающий качество заполнителей и вяжущего (для высококачественных - 0,43, для рядовых - 0,4, для пониженного качества - 0,37). На прочность бетона определенное влияние оказывает зерновой состав заполнителей, правильность перемешивания его составляющих в бетоносмесителе, когда все зерна заполнителя полностью покрыты слоем цементного теста.

  Значительное влияние на прочность бетона оказывают степень уплотнения бетонной смеси, продолжительность и условия твердения бетона. Хорошо уплотненный бетон в благоприятных температурных и влажностных условиях непрерывно набирает прочность в течение ряда лет. При этом в первые 7 -10 сут. прочность бетона растет довольно быстро, затем рост прочности к 28 сут. замедляется и, наконец, в возрасте свыше 1 года постепенно затухает. Например, бетонные образцы при хранении в нормальных условиях в 7-суточном возрасте имеют среднюю прочность, равную 60 - 70% 28-суточной (марочной) прочности, в возрасте 180 сут., 1 года и 2 лет их прочность соответственно составляет 150, 175 и 200 % марочной прочности.

  Фактическую прочность бетона в конструкциях определяют испытанием контрольных образцов, изготовленных из той же бетонной смеси и твердеющих в условиях аналогичных условиям эксплуатации конструкций. Большое влияние на скорость нарастания прочности бетона оказывает температура окружающей среды. При 70 - 85оС в атмосфере насыщенного пара бетоны через 10 -12 ч набирают прочность 60 - 70% марочной. При низких положительных температурах (5 - 7оС) окружающего воздуха скорость нарастания прочности бетона замедляется, а при температуре ниже 0оС твердение бетона прекращается и возобновляется вновь при установлении в окружающей среде устойчивой положительной температуры.

  Плотность. Обычный тяжелый бетон не является плотным материалом.

  Имеющиеся в бетоне поры образовались вследствие испарения излишней воды, а также неполного удаления воздушных пузырьков при уплотнении бетонной смеси. Плотность бетона повышается при тщательном подборе зернового состава заполнителей, уменьшении водоцементного отношения и применении, пластификаторов, снижающих водопотребность смеси при той же подвижности, а также за счет тщательного уплотнения бетонной смеси. С возрастанием плотности бетона повышаются его свойства - прочность, водонепроницаемость, морозо- и коррозиестойкость и др.

  Водонепроницаемость. Плотный бетон при толщине железобетонных конструкций более 200 мм, как правило, оказывается водонепроницаемым. Это свойство бетона характеризуется степенью водопроницаемости, т. е. величиной наименьшего давления воды, при котором она еще не просачивается через бетонный образец. По этому показателю бетоны разделяют на 12 марок: В2, В4, В6, В8, В10, В12, В14, В16, В18, В20, В25 и ВЗО, т. е. на бетоны, которые выдерживают давление соответственно не менее 0,2, 0,4, 0,6, 0,8 и т. д. до 3 МПа. Для повышения водонепроницаемости бетона применяют специальные покрытия, например, пленки из пластмасс или уплотняющие добавки. Значительно возрастает водонепроницаемость бетона при применении расширяющихся цементов.

  Морозостойкость. Тяжелые бетоны по степени морозостойкости делят на марки от Мрз 50 до Мрз 700. Морозостойкость бетона для жилых и промышленных зданий обычно характеризуется маркой Мрз 50. Высокой морозостойкостью обладают бетоны с плотной структурой на низкоалюминатном портландцементе и высококачественном гранитном щебне.

  Усадка и расширение. При твердении на воздухе бетон (если он не на безусадочном или расширяющемся цементах) дает усадку, а при твердении во влажных условиях он может незначительно разбухать. Величина усадки тяжелого бетона обычно около 0,15 мм на 1 м длины бетонного сооружения, что может повлечь за собой образование трещин в массивных и большеразмерных конструкциях. Для уменьшения усадки бетона следует избегать применения бетонов с большим расходом цемента, при этом необходимо использовать крупные заполнители хорошего зернового состава и обеспечивать влажный режим твердения бетона. При бетонировании массивных конструкций в первый период твердения бетона возможно его расширение от нагревания теплотой, выделяющейся при взаимодействии цемента с водой. С целью уменьшить тепловыделение бетона необходимо применять цементы с малой экзотермией, а также устраивать температурные швы.

  Коррозиестойкость. Коррозия бетона происходит в результате разрушения цементного камня и обычно сопровождается понижением прочности и водонепроницаемости, а также ухудшением его сцепления с арматурой. Меры предотвращения: увеличение плотности бетона, применение специальных цементов (пуццоланового, кислотостойкого, глиноземистого), а также облицовка плотными керамическими плитками, обработка специальными веществами (жидким стеклом с кремнефтористым натрием), покрытие гидроизоляционными битуминозными и пленкообразующими полимерными материалами.

  Огнестойкость. Бетон является огнестойким материалом. Однако продолжительное воздействие температур в интервале 160 - 200оС снижает прочность бетона на 25 - 30 %. При нагревании свыше 500оС бетон разрушается. Конструкции, подвергающиеся воздействию температур более 200оС, следует защищать теплоизоляционными материалами или выполнять их из жаростойкого бетона.

 ПОДБОР СОСТАВА БЕТОНА

  Подбор состава бетона заключается в установлении наиболее рационального соотношения между составляющими бетон материалами (цементом, водой, песком, гравием или щебнем) для обеспечения его удобоукладываемости, прочности и др. требуемых показателей. Состав бетонной смеси выражают в виде массового (реже объемного) соотношения между количеством цемента, песка, гравия или щебня с обязательным указанием водоцементного отношения. При этом количество цемента принимают за единицу. В общем виде состав бетонной смеси выражают соотношением 1:Х:У (цемент : песок : гравий) при В/Ц=Z, например 1: 2,5: 4,8 при В/Ц=0,5.

  Состав бетона может быть выражен и в виде расхода материалов по массе на 1 мЗ уплотненной смеси, например, цемента 260, песка 660, гравия 1310 кг/мЗ, воды 165 л/мЗ. Существует несколько методов подбора состава бетона. Наиболее простым и удобным когда состав бетона подбирается в два этапа. Вначале рассчитывается ориентировочный состав бетона, который затем проверяется и уточняется (с изменением соотношения некоторых его компонентов) по результатам пробных замесов и испытаний контрольных образцов.

 Приготовление, транспортирование и укладка бетонной смеси

Приготовление бетонной смеси. В современном строительстве приготовление бетонной смеси в основном сосредоточено на автоматизированных бетонных заводах и в бетоносмесительных узлах предприятий. Процесс приготовления бетонной смеси состоит из автоматического дозирования всех компонентов бетонной смеси и перемешивания их в бетоносмесителях до получения однородной массы.

  Применяемые бетоносмесители непрерывного действия состоят из цилиндрического барабана с лопастями на внутренней поверхности. За счет вращения барабана и винтообразного направления лопастей материалы перемещаются вдоль барабана и тщательно перемешиваются, а готовая бетонная смесь через разгрузочное устройство непрерывным потоком поступает на транспортные средства. Производительность бетоносмесителей непрерывного действия до 120 мЗ/ч, в то время как бетоносмеситель периодического действия емкостью 2400 л имеет производительность до 36 мЗ/ч.

  Однородность и прочность бетона в значительной, мере определяются качеством перемешивания смеси. Для получения однородной бетонной смеси следует строго соблюдать оптимальное время перемешивания, которое зависит от емкости барабана бетоносмесителя, подвижности бетонной смеси и других факторов и устанавливается опытным путем.

  Транспортирование бетонной смеси в большинстве случаев производится автосамосвалами, а на малые расстояния (в пределах строительной площадки) -ленточными транспортерами, бетононасосами, вагонетками, бадьями и др. Любой способ транспортирования должен исключать возможность расслоения и снижения степени подвижности бетонной смеси в результате испарения воды, вытекания цементного молока или начала схватывания цемента. Поэтому следует транспортировать бетонную смесь по кратчайшим расстояниям, с наименьшим числом перегрузок и ограничивать длительность перевозки (до 1 ч.)

  В случае, когда строительная площадка находится на значительном расстоянии от бетонного завода для перевозки и приготовления бетонной смеси используются автобетоносмесители. Смесительный барабан автобетоносмесителя загружают на заводе исходными материалами, а бетонная смесь приготовляется в пути в непосредственной близости от места укладки бетона.

  Укладка бетонной смеси. Качество бетонных и железобетонных конструкций в значительной мере зависит от способа укладки и уплотнения бетонных смесей. В заранее подготовленную опалубку (форму) с установленной в ней арматурой бетонную смесь обычно укладывают горизонтальными слоями. При этом смесь должна плотно заполнять весь объем опалубки или формы, включая углы и суженные места. Для механизации этой довольно трудоемкой операции используют специальные механизмы: бетонораздатчики и бетоноукладчики. Бетонную смесь, как правило, уплотняют вибрированием, после чего зерна крупного заполнителя укладываются компактно, промежутки между ними заполняются цементным раствором, а пузырьки воздуха вытесняются наружу. При прекращении вибрирования уложенная в опалубку или форму бетонная смесь мгновенно загустевает.

  Для уплотнения бетонной смеси применяют электромагнитные, пневматические, но чаще всего электромеханические вибраторы. По конструкции различают вибраторы поверхностные, глубинные и площадочные. Выбирают вибратор в зависимости от вида, формы и размеров бетонируемой конструкции. Конструкции с большими открытыми поверхностями (полы, плиты и т. п.) бетонируют поверхностными вибраторами, которые обеспечивают распространение колебаний в толщу бетона на глубину 20 - 25 см. Перемещать поверхностный вибратор с одной позиции на другую рекомендуется так, чтобы он своей площадкой перекрывал на 10 - 20 см границу уже провибрированного участка.

  При бетонировании массивных конструкций (фундаменты, колонны и др.) используют глубинные вибраторы - вибробулавы и вибраторы с гибким валом. Уплотняют бетонную смесь внутренними вибраторами по слоям, толщина которых не должна превышать 1,25 длины рабочей части вибратора, а шаг перестановки не должен быть выше полуторного радиуса их действия. Продолжительность вибрирования на каждой позиции должна обеспечивать достаточное уплотнение бетонной смеси, основными признаками которого являются прекращение оседания бетонной смеси, появление цементного молокана ее поверхности и прекращение выделения воздушных пузырьков.

   В зависимости от степени подвижности бетонной смеси продолжительность вибрирования на одной позиции 20 - 60 с. транспортировать бетонную смесь по кратчайшим расстояниям, с наименьшим числом перегрузок и ограничивать длительность перевозки (до 1 ч.). В случае, когда строительная площадка находится на значительном расстоянии от бетонного завода для перевозки и приготовления бетонной смеси используются автобетоносмесители. Смесительный барабан автобетоносмесителя загружают на заводе исходными материалами, а бетонная смесь приготовляется в пути в непосредственной близости от места укладки бетона. Укладка бетонной смеси.

  Качество бетонных и железобетонных конструкций в значительной мере зависит от способа укладки и уплотнения бетонных смесей. В заранее подготовленную опалубку (форму) с установленной в ней арматурой бетонную смесь обычно укладывают горизонтальными слоями. При этом смесь должна плотно заполнять весь объем опалубки или формы, включая углы и суженные места. Для механизации этой довольно трудоемкой операции используют специальные механизмы: бетонораздатчики и бетоноукладчики.

  Бетонную смесь, как правило, уплотняют вибрированием, после чего зерна крупного заполнителя укладываются компактно, промежутки между ними заполняются цементным раствором, а пузырьки воздуха вытесняются наружу. При прекращении вибрирования уложенная в опалубку или форму бетонная смесь мгновенно загустевает. Для уплотнения бетонной смеси применяют электромагнитные, пневматические, но чаще всего электромеханические вибраторы. По конструкции различают вибраторы поверхностные, глубинные и площадочные. Выбирают вибратор в зависимости от вида, формы и размеров бетонируемой конструкции. Конструкции с большими открытыми поверхностями (полы, плиты и т. п.) бетонируют поверхностными вибраторами, которые обеспечивают распространение колебаний в толщу бетона на глубину 20 - 25 см. Перемещать поверхностный вибратор с одной позиции на другую рекомендуется так, чтобы он своей площадкой перекрывал на 10 - 20 см границу уже провибрированного участка.

  При бетонировании массивных конструкций (фундаменты, колонны и др.) используют глубинные вибраторы - вибробулавы и вибраторы с гибким валом. Уплотняют бетонную смесь внутренними вибраторами по слоям, толщина которых не должна превышать 1,25 длины рабочей части вибратора, а шаг перестановки не должен быть выше полуторного радиуса их действия. Продолжительность вибрирования на каждой позиции должна обеспечивать достаточное уплотнение бетонной смеси, основными признаками которого являются прекращение оседания бетонной смеси, появление цементного молокана ее поверхности и прекращение выделения воздушных пузырьков. В зависимости от степени подвижности бетонной смеси продолжительность вибрирования на одной позиции 20 - 60 с. На заводах сборного железобетона бетонную смесь уплотняют в формах на стационарных виброплощадках. Применяют, кроме того, и другие способы уплотнения бетонных смесей, например, центрифугирование, вибропрессование, виброштампование, вибровакуумирование, вибропрокат. Твердение бетона и уход за ним. Рост прочности бетона возможен только при определенных температурных и влажностных условиях. В нормальных условиях твердения (температура окружающей среды 15 - 20оС и влажность 90 -100%) бетон в течение 28 сут набирает марочную прочность.

  Твердение бетона значительно ускоряется при повышении температуры среды до 60 - 85оС с обязательным сохранением в бетоне влаги. Во влажной среде бетон приобретает значительно большую прочность, чем на воздухе. В сухих условиях он быстро теряет влагу, и его дальнейшее твердение прекращается. Для того чтобы уложенный и уплотненный бетон получил требуемую прочность в назначенный срок, за ним необходим правильный уход.

  Особенно важен уход за бетоном в первые дни после укладки, иначе можно настолько снизить качество бетона, что его нельзя будет исправить даже при последующем тщательном уходе. Свежеуложенный бетон выдерживают во влажном состоянии и предохраняют от сотрясений, ударов, каких-либо повреждений, а также резких изменений температуры.

  В летнее время открытые поверхности свежеуложенного бетона следует укрывать мешковиной, рогожей, песком, опилками или другими материалами и периодически увлажнять. Поливать бетон начинают не позднее чем через 10 -12 ч после бетонирования, а в жаркую ветренную погоду через 2-З ч. Летом бетон обычно поливают в течение первых 3 сут не реже чем через каждые 4 ч днем и не менее 1 раза ночью, а в последующее время - не менее 3 раз в сутки. Бетон, приготовленный на портландцементе, следует поливать не менее 7 сут., на прочих цементах, в том числе на цементах с пластифицирующими добавками - не менее 14 сут. Особенно обильно надо поливать ночью. Вместо полива водой поверхности бетона можно покрывать битумной эмульсией, лаком этиноль, латексом и другими жидкими материалами, которые образуют непроницаемую пленку, надежно защищающую бетон от испарения влаги. Распалубливать бетонные и железобетонные конструкции следует только после достижения бетоном определенной прочности, устанавливаемой путем испытания контрольных образцов-кубов.

  Твердение бетона при температурах ниже 5 - 10оС значительно замедляется, а при температурах ниже нуля практически прекращается. Находящаяся в бетоне свободная вода, замерзая, увеличивается в объеме, что приводит к нарушению структуры еще не затвердевшего цементного камня, а это, в свою очередь, снижает конечную прочность бетона. Наиболее опасно замерзание бетона в период схватывания цемента. Поэтому основным условием ведения бетонных работ в зимнее время является обеспечение в уложенном бетоне определенной положительной температуры, исключающей замерзание бетона в раннем возрасте до достижения им к моменту замерзания 50% марочной прочности.

  Для предупреждения раннего замерзания бетона и обеспечения твердения его при низких температурах применяются способ "термоса", паро- и электротермообработка бетона, а также применение бетона с химическими добавками - ускорителями твердения. Каждый способ можно применять самостоятельно или в сочетании. Способ "термоса" применяется при бетонировании массивных конструкций и предусматривает обеспечение в бетоне во время его твердения положительной температуры за счет подогрева до 40оС составляющих бетонной смеси (воды, песка, крупного заполнителя) и теплоты, выделяемой цементом при твердении. Для сохранения запаса теплоты в течение определенного срока конструкции из свежеуложенного бетона утепляют, покрывая их соломенными матами, опилками, шлаком и др. При бетонировании в зимнее время немассивных конструкций (колонн, балок, перекрытий и т.п.) уложенную в опалубку бетонную смесь подвергают паро-и электротермообработке. Применяя эти методы термообработки бетона, удается в течение 1 - 2 сут получать прочность, равную 50 -70% марочной. Химические добавки применяют с целью снизить температуру замерзания воды в бетонной смеси и обеспечить возможность твердения бетона при отрицательной температуре.

  В качестве химических добавок вводят хлористый кальций и натрий, нитрит натрия, нитрит-нитрат кальция, мочевину, поташ, а также комплексные химические добавки на основе пластификатора и противоморозного компонента. Контроль качества бетона. Качество бетонных работ контролируют на всех этапах производства: испытывают составляющие бетонной смеси, систематически проверяют правильность дозирования, перемешивания и уплотнения бетонной смеси, контролируют твердение бетона, определяют прочность затвердевшего бетона. Прочность бетона контролируют путем отбора проб бетонной смеси и изготовления из нее контрольных образцов-кубов, которые должны твердеть в тех же условиях, что и бетон монолитных конструкций. Контрольные образцы испытывают в возрасте 7 и 28 сут. или в другие установленные сроки.

  Разработаны неразрушающие механические и физические методы определения прочности и однородности бетона. Принцип действия их основан на зависимости величины заглубления в бетон бойка (шарика) при ударе от прочности испытуемого бетона или на изменении скорости распространения ультразвукового импульса или волн удара в бетон в зависимости от его плотности и прочности. Для выявления внутренних скрытых дефектов структуры бетона (трещин, раковин, пустот и т.д.) применяют специальные ультразвуковые дефектоскопы.

 Специальные виды тяжелых бетонов

  Гидротехнический бетон в отличие от обычного тяжелого бетона характеризуется повышенной плотностью, водонепроницаемостью, морозостойкостью, низким тепловыделением, стойкостью против воздействия агрессивных вод. Для придания бетону таких свойств применяют сульфатостойкий и пуццолановый портландцемент, высококачественные заполнители с хорошо подобранным зерновым составом, обеспечивают тщательное приготовление и укладку бетонной смеси, а также правильный уход за твердеющим бетоном.

  Дорожный бетон применяют для устройства покрытий на автомагистралях, дорогах промышленных предприятий и городских улицах. В процессе эксплуатации покрытия подвергаются не только воздействию транспортных средств, но и влиянию атмосферных условий (многократное увлажнение и высыхание, замораживание и оттаивание), поэтому к дорожному бетону предъявляют повышенные требования по прочности, плотности износо- и морозостойкости. Дорожный бетон должен иметь достаточно высокую прочность на изгиб в пределах 4 - 5,5 МПа при марках МЗОО - М500, морозостойкость его обычно характеризуется марками МРЗ 150 и МРЗ 200.

  Декоративные бетоны используются для повышения эстетической выразительности зданий и сооружений. Бетон данного вида получают за счет применения цветных составляющих - белого и цветного цементов, щелочестойких пигментов, заполнителей из цветных горных пород. Декоративный бетон наряду с требованиями к его цвету и внешнему виду должен удовлетворять повышенным требованиям в отношении прочности, плотности и долговечности, так как он является наружным слоем железобетонных изделий и в первую очередь подвергается атмосферным воздействиям, а в ряде случаев и истиранию. Марка декоративного бетона обычно М150, а морозостойкость - МРЗ 50.

  Жаростойкий бетон способен сохранять свои физико-механические свойства при длительном воздействии высоких температур. В зависимости от степени огнеупорности жаростойкие бетоны разделяют на: высокоогнеупорные t > 1770оС, огнеупорные -1580 - 177ОоС и жароупорные - ниже 1580оС. Для приготовления жаростойких бетонов в качестве вяжущих используют глиноземистый цемент, портландцемент, шлакопортландцемент и жидкое стекло с добавкой кремнефтористого натрия. Заполнителями и тонкомолотыми компонентами служат металлургические шлаки, бой керамических и огнеупорных материалов, базальт, диабаз, андезит, артикский туф и др. Жаростойкие бетоны в зависимости от вида исходных материалов имеют марки М100-М250. Применяют их для футеровки промышленных печей, подов вагонеток туннельных печей, фундаментов доменных и мартеновских печей, дымовых труб и др.

  Особо тяжелые бетоны применяют для защиты обслуживающего персонала атомных электростанций от радиоактивных излучений. Установлено, что наиболее опасные для человеческого организма гамма-лучи и нейтронное излучение эффективно поглощает бетон, который имеет высокую плотность и содержит в своем составе компоненты с большим количеством химически связанной воды. Особо тяжелые защитные бетоны приготовляют на заполнителях: магнетите, лимоните, барите, металлическом скрапе, чугунной дроби и т. п. Плотность таких бетонов зависит от вида заполнителя и достигает у бетона с магнетитовым заполнителем 4000, а с чугунной дробью 5000 кг/мЗ. В качестве вяжущих используют портландцементы, шлако-портландцементы и глиноземистые цементы. С целью повысить защитные свойства гидратных бетонов (названных так в связи с большим содержанием химически связанной воды) в их состав вводят добавки: карбид бора, хлористый литий и др.

  Прочность и долговечность особо тяжелых бетонов такие же, как у обычных тяжелых бетонов. Бетонополимеры представляют собой бетоны, поры которых заполнены полимерами в результате специальной обработки. Бетон пропитывают петролатумом, разбавленными смолами, битумом, серой, жидкими мономерами (метилметакрилатом или стиролом), полимерами (эпоксидными и полиэфирными смолами) и различными композициями на их основе. При этом значительно повышаются механические, физические и химические свойства бетона. Например, прочность бетона при сжатии повышается до 200 МПа, а водонепроницаемоеть, морозостойкость и долговечность увеличиваются в несколько раз. Пропитка полимерами повышает стоимость бетона, поэтому ее осуществляют, когда она экономически оправдана (бетонополимерные изделия, работающие в суровых климатических или агрессивных условиях).

  Легкие бетоны на пористых заполнителях.

  Легкие бетоны, отличающиеся высокой пористостью (до 45 %) и сравнительно небольшой средней плотностью (до 1800 кг/мЗ) используют для изготовления несущих и ограждающих сборных бетонных и железобетонных конструкций. Применение их взамен кирпича и тяжелого бетона дает возможность повысить теплозащитные качества ограждений, что, в свою очередь, позволяет уменьшить толщину и массу стен зданий, сократить транспортные расходы. Разновидности легких бетонов

  В зависимости от вида применяемого крупного пористого заполнители легкие бетоны разделяют на: керамзитобетон, аглапоритобетон, шлакобетон, пемзобетон и т. д

По структуре имеются следующие основные виды:

  1. обыкновенные легкие бетоны, изготовляемые из вяжущего вещества, воды, мелкого и крупного заполнителей при полном заполнении раствором пустот между зернами крупного заполнителя;

  2. крупнопористые (беспесчаные) легкие бетоны, в которых зерна крупного заполнителя покрыты тонким слоем цементного теста, а межзерновые пустоты остаются свободными;

  3. поризованные легкие бетоны на основе вяжущего вещества и порообразователя. С помощью порообразователя в структуре бетона возникают воздушные ячейки. Это повышает пористость цементного раствора и тем самым снижает плотность бетона.

В зависимости от назначения легкие бетоны на пористых заполнителях разделяют на следующие виды:

  1. МРЗ 15 и выше), применяемые в несущих конструкциях.

  2. теплоизоляционные (средней плотностью в воздушно-сухом состоянии менее 500 кг/мЗ, теплопроводностью не более 0,25 Вт/(м-оС)), применяемые для изготовления теплоизоляционных плит и других изделий;

  3. конструкционно-теплоизоляционные (со средней плотностью 500 -1400 кг/мЗ, прочностью не ниже М35, теплопроводностью не более 0,6 Вт/(м.оС)), используемые в несущих и самонесущих ограждающих конструкциях (стенах и перекрытиях);

  4. конструкционные (средней плотностью 1400 -1800 кг/мЗ, прочностью не ниже М50, морозостойкостью По виду вяжущего легкие бетоны разделяют на: цементные, известковые, гипсовые, на смешанном вяжущем и жидком стекле. Заполнители для легких бетонов. Природные пористые заполнители: дробленые пемза, вулканический туф или лава, известняк-ракушечник и др. Наиболее эффективны пемза и вулканические туфы, имеющие высокую замкнутую пористость, имеющие небольшое водопоглощение. Применение их эффективно когда они являются местными материалами.

  Искусственными заполнителями служат отходы промышленности (шлаки металлургические и топливные, шлаки химических производств, а также зола) и специальной переработки природных каменных материалов (вспученные при обжиге глин керамзит и аглопорит, вспученные перлит и вермикулит, шлаковая пемза, гранулированные шлаки, зольный гравий и пр.).

  Свойства легких бетонов. Основными свойствами легких бетонов на пористых заполнителях являются плотность, теплопроводность, прочность и морозостойкость. Для того чтобы получить легкий бетон с заданными свойствами, необходимо не только выбрать исходные составляющие материалы, но и правильно подобрать состав бетона. Средняя плотность бетона зависит главным образом от насыпной плотности и зернового состава заполнителя, расхода вяжущего и воды. Плотность легкого бетона с увеличением расхода вяжущего возрастает. Поэтому для снижения плотности бетона необходимо за счет подбора оптимального зернового состава заполнителей добиваться наименьшего расхода вяжущего или образования в цементном камне мелких замкнутых пор. Так называемые поризованные легкие бетоны целесообразно приготовлять при наличии утяжеленных пористых заполнителей насыпной плотностью более 600 кг/мЗ. Теплопроводность легких бетонов колеблется в широких пределах - от 0,07 до 0,7 Вт/(м.оС). С увеличением плотности теплопроводность бетона повышается. Теплоизоляционные легкие бетоны теплопроводностью менее 0,2 Вт/(м.оС) получают при применении очень легких заполнителей, например, вспученного перлита.

  Прочность. Чем больше в объеме бетона прочного цементного камня, тем выше прочность бетона. Однако при увеличении содержания цемента плотность бетона возрастает, а вместе с тем повышается его теплопроводность, что нежелательно.

  Морозостойкость легкого бетона зависит от вида и количества израсходованного вяжущего, а также от морозостойкости заполнителя. Бетоны на портландцементе обладают более высокой морозостойкостью, которая возрастает с увеличением количества цемента. Морозостойкие легкие заполнители (пемза, керамзит, аглопорит) позволяют получать бетон морозостойкостью МРЗ 25 -100. н

 

 1. Общие сведения Бетон на неорганических вяжущих веществах представляет собой композиционный материал, получаемый в результате формования и твердения рационально подобранной бетонной смеси, состоящей из вяжущего вещества, воды, заполнителей и специальных добавок.

Состав бетонной смеси должен обеспечить бетону к определенному сроку заданные свойства (прочность, морозостойкость, водонепроницаемость и др.)

Бетон является главным строительным материалом, который применяют во всех областях строительства.

Преимуществами бетона и железобетона являются: низкий уровень затрат на изготовление конструкций в связи с применением местного сырья, возможность применения в сборных и монолитных конструкциях различного вида и назначения, механизация и автоматизация приготовления бетона и производства конструкций. Бетон при надлежащей обработке позволяет изготавливать конструкции оптимальной формы с точки зрения строительной механики и архитектуры. Бетон долговечен и огнестоек, его плотность, прочность и другие характеристики можно изменять в широких пределах и получать материал с заданными свойствами.

Недостатком бетона, как любого каменного материала, является низкая прочность на растяжение, которая в 10-15 раз ниже прочности на сжатие. Этот недостаток устраняется в железобетоне, когда растягивающие напряжения воспринимает арматура.

Близость коэффициентов температурного расширения и прочное сцепление обеспечивают совместную работу бетона и стальной арматуры в железобетоне, как единого целого. В силу этих преимуществ бетоны различных видов и железобетонные конструкции из них являются основой современного строительства.

По виду вяжущего выделяют:

цементные (наиболее распространенные)

силикатные (известково-кремнеземистые)

гипсовые, смешанные (цементно-известковые, известково-шлаковые и т.п.),

специальные - применяемые при наличии особых требований (жаростойкости, химической стойкости и др.)

По виду заполнителя различают бетоны на: плотных, пористых, специальных заполнителях, удовлетворяющих специальным требованиям (защиты от излучений, жаростойкости, химической стойкости и т.п.).

В правильно подобранной бетонной смеси расход цемента составляет 8-15%, а заполнителей - 80-85% (по массе).

В виде заполнителей применяют местные каменные материалы: песок, гравий, щебень, а также побочные продукты промышленности (например, дробленные и гранулированные металлургические шлаки), характеризующиеся сравнительно невысоким уровнем издержек производства.

В зависимости от плотности различают бетоны:

особо тяжелые - плотностью более 2500 кг/м3, изготовляемые на особо тяжелых заполнителях (из магнетита, барита, чугунного скрапа и др.); эти бетоны применяют для специальных защитных конструкций;

тяжелые - плотностью 2200-2500 кг/м3 на песке, гравии или щебне из тяжелых горных пород; применяют во всех несущих конструкциях;

облегченные - плотностью 1800-2200 кг/м3; их применяют преимущественно в несущих конструкциях;

легкие - плотностью 500-1800 кг/м3; к ним относятся:

легкие бетоны на пористых природных и искусственных заполнителях;

ячеистые бетоны (газобетон и пенобетон) из смеси вяжущего, воды, тонкодисперсного кремнеземистого компонента и порообразователя;

крупнопористые (беспесчаные) бетоны на плотном или пористом крупном заполнителе без мелкого заполнителя;

особо легкие (ячеистые и на пористых заполнителях) - плотностью менее 500 кг/м, используемые в качестве теплоизоляции.

2. Материалы для изготовления бетона

Цемент - гидравлическое вяжущее вещество при перемешивании с водой и твердении в течение определенного срока на воздухе или под водой превращается в нерастворимый в воде материал. Для тяжелого бетона применяют портландцемент и его разновидности, а также глиноземистый цемент и другие вяжущие, отвечающие требованиям соответствующих ГОСТов.

Марку цемента назначают в зависимости от проектной марки бетона по прочности при сжатии: 

Марка бетона

М150

М200

М250

М300

М350

М400

М450

М500

М600 и выше

 

Марка цемента

М300

М300 М400

М400

М400 М500

М400 М500

М500 М600

М550 М600

М600

М600

 

Если марка цемента выше той, которая рекомендуется для данного бетона, то надо разбавить высокоактивный цемент тонкомолотой активной добавкой, чтобы избежать перерасхода высокомарочного цемента.

Мелкий заполнитель

В качестве мелкого заполнителя в тяжелом бетоне применяют песок, состоящий из зерен размером 0,16-5 мм и имеющий плотность более 1,8 г/см3. Для приготовления тяжелых бетонов применяют природные пески, образовавшиеся в результате естественного разрушения горных пород, а также искусственные, полученные путем дробления твердых горных пород и из отсевов. Природные пески представляют рыхлую смесь зерен различных минералов, входивших в состав изверженных (реже осадочных) горных пород (кварца, полевого шпата, кальцита, слюды и др.).

Качество песка, применяемого для изготовления бетона, определяется минеральным составом, зерновым составом и содержанием вредных примесей.

Заполнитель должен состоять из зерен разного размера (разных фракций), при этом количество крупных, средних и мелких зерен (т.е. зерновой состав заполнителя) устанавливается на основе проверенных рекомендаций таким образом, чтобы зерна меньшего размера располагались в пустотах между крупными.

Чем компактнее расположены зерна заполнителей, тем меньше объем пустот.

Зерновой (гранулометрический) состав песка определяют просеиванием высушенной средней пробы (1000 г) через стандартный набор сит с размерами отверстий 5; 2,5; 1,25; 0,63; 0,315; 0,16 мм. Мелкие частицы песка (пыль) имеют размер менее 0,16 мм. В песке зерен гравия от 5 до10 мм допускается не более 5%, зерен крупнее 10 мм - не должно быть.

Для оценки крупности песка применяют безразмерный показатель - модуль крупности, который вычисляют как отношение суммы полных остатков на ситах, ко всей пробе, принятой за 100.

В зависимости от зернового состава песок разделяют на крупный, средний, мелкий

Мелкие частицы (пыль, ил, глина) увеличивают водопотребность бетонных смесей и расход цемента в бетоне. Поэтому содержание в песке зерен, проходящих через сито 0,16 мм, должно быть не более 10% по массе, при этом количество пылевидных, илистых и глинистых частиц, определяемых отмучиванием, не должно превышать 3%. Глина набухает при увлажнении и увеличивается в объеме при замерзании, снижая морозостойкость.

Песок очищают от мелких частиц путем промывки. 

Классификация песков по крупности 

Группа песков

Полный остаток на сите с сеткой

0,63 мм, %

Модуль крупности

Крупный

50-75

3,5-2,5

Средний

35-50

2,5-2

Мелкий

20-35

2-1,5

В природном песке и в гравии могут содержаться органические примеси (например, продукты разложения остатков растений), в частности, органические гумусовые кислоты, которые понижают прочность бетона и даже разрушают цемент. Наличие органических примесей определяют колориметрическим (цветовым) методом.

Крупный заполнитель 

В качестве крупного заполнителя для бетона применяют гравий, щебень с размером зерен 5-70 мм. При бетонировании массивных конструкций можно применять щебень крупностью до 150 мм.

Зерна гравия имеют окатанную форму и гладкую поверхность, личного зернового состава Обычно гравий содержит в том или ином количестве песок, а также вредные примеси - глину, пыль, слюду, гумусовые вещества (органические примеси).

Щебень получают дроблением изверженных, метаморфических, плотных и водостойких осадочных горных пород (плотных известняков, песчаников и др.). Зерна щебня имеют угловатую форму; желательно, чтобы по форме они приближались к кубу. Более шероховатая, чем у гравия, поверхность зерен способствует лучшему их сцеплению с цементным камнем, поэтому для бетона высокой прочности (М500 и выше) обычно применяют щебень, а не гравий.

Качество крупного заполнителя определяется минеральным составом и свойствами исходной породы (ее прочностью и морозостойкостью), зерновым составом заполнителя, формой зерен и содержанием вредных примесей.

Прочность исходной породы при сжатии в насыщенном водой состоянии должна не менее чем в 1,5-2 раза превышает марку бетона.

Морозостойкость щебня и гравия должна обеспечивать получение проектной марки бетона по морозостойкости. Установлены марки щебня и гравия по морозостойкости от 15 до 300.

Марка обозначает число циклов попеременного замораживания и оттаивания, при котором потеря в массе пробы крупного заполнителя не превышает 5% (для марок 15 и 25 допускается потеря массы до 10%).

Зерновой состав крупного заполнителя устанавливают с учетом наибольшего D и наименьшего d размеров зерен щебня или гравия. Наибольший размер зерен при бетонировании железобетонных балок, колонн, рам должен быть не более наименьшего расстояния между стержнями арматуры, а для плит перекрытий и покрытий - не более толщины плиты. Наименьшая крупность соответствует размеру отверстия самого мелкого из сит, через которое проходит не более 5% просеиваемой пробы; обычно наименьшая крупность равна 5(3) мм.

В зависимости от крупности зерен щебень, гравий подразделяют на четыре фракции: 5-10 мм, 10-20 мм, 20-40 мм и 40-70 мм. Щебень, гравий могут поступать в виде смеси двух или большего числа фракций. По соглашению между поставщиком и потребителем может применяться щебень фракций 3-10 мм, 10-15 мм (или 5-15),15-20 мм. Зерновой состав каждой фракции или смеси фракций должен находиться в указанных ниже пределах. 

Размер контрольных сит

d

0,5 (d+D)

d

1,25D

5(3) мм

10 мм и более

для одной фракции

для смеси фракций

Полный остаток на ситах, % по массе

95-100

90-100

40-80

50-70

0-10

0

В зависимости от формы зерен устанавливается три группы щебня из естественного камня: кубовидная, улучшенная и обычная. Содержание зерен пластинчатой (лещадной) и игловатой формы в них не превышает соответственно 15, 25 и 35% по массе. К пластинчатым и игловатым зернам относят такие, в которых толщина или ширина меньше длины в 3 и более раза.

Содержание пылевидных и илистых частиц допускается в зависимости от вида исходной горной породы и марки щебня и гравия по прочности. Количество пылевидных, глинистых и илистых частиц, определяемое отмучиванием, в гравии и щебне допускается не более 1%.

Содержание органических примесей в крупном заполнителе проверяют, пользуясь той же методикой, которая применяется для песка. Гравий и щебень при обработке водным раствором едкого натра не должны придавать раствору окраску темнее эталона. 

Вода 

Вода, применяемая для затворения бетонной смеси и поливки бетона, не должна содержать вредных примесей, препятствующих схватыванию и твердению вяжущего вещества. Для затворения бетонной смеси применяют водопроводную питьевую воду, а также природную воду (рек, естественных водоемов), имеющую водородный показатель рН не менее 4, содержащую не более 5600 мг/л минеральных солей, в том числе сульфатов не более 2700 мг/л . He допускается применять болотные, а также сточные бытовые и промышленные воды без их очистки. 

Добавки для бетонов 

В зависимости от назначения (основного эффекта действия) добавки для бетонов подразделяют на виды:

Регулирующие свойства бетонных смесей:

пластифицирующие;

стабилизирующие;

водоудерживающие;

улучшающие перекачиваемость;

регулирующие сохраняемость бетонных смесей;

замедляющие схватывание ускоряющие схватывание;

поризующие (для легких бетонов): воздухововлекающие, пенообразующие, газообразующие

Регулирующие твердение бетона:

замедляющие твердение,

ускоряющие твердение

Повышающие прочность и (или) коррозионную стойкость, морозостойкость бетона и железобетона, снижающие проницаемость бетона: водоредуцирующие, кольматирующие, газообразующие, воздухововлекающие, повышающие защитные свойства бетона по отношению к стальной арматуре (ингибиторы коррозии стали).

Придающие бетону специальные свойства:

противоморозные (обеспечивающие твердение при отрицательных температурах);

гидрофобизирующие.  

Суперпластификаторы  в большинстве случаев представляют собой синтетические полимеры: производные меламиновой смолы или нафталинсульфокислоты (С-3); другие добавки (СПД, ОП-7 и др.) получены на основе вторичных продуктов химического синтеза. Суперпластификаторы, вводимые в бетонную смесь в количестве 0,15-1,2% от массы цемента, разжижают бетонную смесь в большей степени, чем обычные пластификаторы.

Пластифицирующий эффект сохраняется в течение 1-1,5 ч после введения добавки, а через 2-3 ч он уже невелик. В щелочной среде эти добавки переходят в другие вещества, безвредные для бетона и не снижающие его прочности.

Суперпластификаторы позволяют применять литьевой способ изготовления железобетонных изделий и бетонирования конструкций с использованием бетононасосов и трубного транспорта бетонной смеси. С другой стороны, эти добавки дают возможность существенно снизить В/Ц, сохраняя подвижность смеси, и изготовлять высокопрочные бетоны. 

3. Свойства бетона 

Реологические свойства бетонной смеси Бетонной смесью называют рационально составленную и тщательно перемешанную смесь компонентов бетона до начала процессов схватывания и твердения.

Состав бетонной смеси определяют, исходя из требований к самой смеси и к бетону.

Основной структурообразующей составляющей в бетонной смеси является цементное тесто.

Независимо от вида бетона бетонная смесь должна удовлетворять двум главным требованиям: обладать хорошей удобоукладываемостью, соответствующей применяемому способу уплотнения и сохранять при транспортировании и укладке однородность, достигнутую при приготовлении.

При действии возрастающего усилия бетонная смесь вначале претерпевает упругие деформации, когда же преодолена структурная прочность, она течет подобно вязкой жидкости. Поэтому бетонную смесь называют упруго-пластично-вязким телом, обладающим свойствами твердого тела и истинной жидкости.

Свойство бетонной смеси разжижаться при механических воздействиях и вновь загустевать в спокойном состоянии называется тиксотропией 

Технические свойства бетонной смеси При изготовлении железобетонных изделий и бетонировании монолитных конструкций самым важным свойством бетонной смеси является удобоукладываемость (или удобоформуемость), т.е. способность заполнять форму при данном способе уплотнения, сохраняя свою однородность.

Для оценки удобоукладываемости используют три показателя:

подвижность бетонной смеси (П), являющуюся характеристикой структурной прочности смеси;

жесткость (Ж), являющуюся показателем динамической вязкости бетонной смеси;

связность, характеризуемую водоотделением бетонной смеси после ее отстаивания.  

Подвижность бетонной смеси характеризуется измеряемой осадкой (см) конуса (ОК), отформованного из бетонной смеси, подлежащей испытанию. Подвижность бетонной смеси вычисляют как среднее двух определений, выполненных из одной пробы смеси. Если осадка конуса равна нулю, то удобоукладываемость бетонной смеси характеризуется жесткостью.  

Жесткость бетонной смеси характеризуется временем (с) вибрирования, необходимым для выравнивания и уплотнения предварительно отформованного конуса бетонной смеси в приборе для определения жесткости. 

Связность бетонной смеси обуславливает однородность строения и свойств бетона. Очень важно сохранить однородность бетонной смеси при перевозке, укладке в форму и уплотнении. При уплотнении подвижных бетонных смесей происходит сближение составляющих ее зерен, при этом часть воды отжимается вверх. Уменьшение количества воды затворения при применении пластифицирующих добавок и повышение водоудерживающей способности бетонной смеси путем правильного подбора зернового состава заполнителей являются главными мерами борьбы с расслоением подвижных бетонных смесей. 

Удобоукладываемость бетонной смеси

Количество воды затворения является основным фактором, определяющим удобоукладываемость бетонной смеси. Вода затворения (В, кг/м3) распределяется между цементным тестом (Вц) и заполнителем (Взап): В= Вц + Взап. Количество воды в цементном тесте определяют его реологические свойства: предельное напряжение сдвига и вязкость, а следовательно, и технические свойства бетонной смеси - подвижность и жесткость.

Водопотребность заполнителя Взап является его важной технологической характеристикой; она возрастает с увеличением суммарной поверхности зерен заполнителя и поэтому велика у мелких песков.

Для обеспечения требуемой прочности бетона величина водоцементного отношения должна сохраняться постоянной, поэтому возрастание водопотребности вызывает перерасход цемента. При мелких песках он достигает 15-25%, поэтому мелкие пески следует применять после обогащения крупным природным или дробленым песком и с пластифицирующими добавками, снижающими водопотребность. 

Деформативные свойства бетона

Под нагрузкой бетон ведет себя иначе, чем сталь и другие упругиe материалы. Конгломератная структура бетона определяет его поведение при возрастающей нагрузке осевого сжатия.

Область условно упругой работы бетона - от начала нагружения до напряжения сжатия, при котором по поверхности сцепления цементного камня с заполнителем образуются микротрещины.

Опыты подтвердили, что при небольших напряжениях и кратковременном нагружения для бетона характерна упругая деформация, подобная деформации пружины.

Модуль упругости бетона возрастает при увеличении прочности и зависит от пористости: увеличение пористости бетона сопровождается снижением модуля упругости.

При одинаковой марке по прочности модуль упругости легкого бетона на пористом заполнителе меньше в 1,7-2,5 раза тяжелого. Еще ниже модуль упругости ячеистого бетона. Таким образом, упругими свойствами бетона можно управлять, регулируя его структуру. Модуль упругости бетона при сжатии и растяжении принимают равными между собой: 

Есж = Ер = Еб. 

Ползучестью называют явление увеличения деформаций бетона во времени при действии постоянной статической нагрузки.

Ползучесть зависит от вида цемента и заполнителей, состава бетона, его возраста, условий твердения и влажности. Меньшая ползучесть наблюдается при применении высокомарочных цементов и плотного заполнителя - щебня из изверженных горных пород. Пористый заполнитель усиливает ползучесть, поэтому легкие бетоны имеют большую ползучесть по сравнению с тяжелыми.

Преждевременное высыхание бетона ухудшает структуру и увеличивает его ползучесть. Однако насыщение водой затвердевшего бетона может вызвать рост ползучести.

Ползучесть и связанная с ней релаксация напряжений может играть отрицательную роль. Например, ползучесть бетона приводит к потере натяжения; в предварительно напряженных железобетонных конструкциях. 

Усадка и набухание бетона

При твердении на воздухе происходит усадка бетона, т.е. бетон сжимается и линейные размеры бетонных элементов сокращаются. Усадка слагается из влажностной, карбонизационной и контракционной составляющих. Вследствие усадки бетона в железобетонных и бетонных конструкциях возникают усадочные напряжения, поэтому сооружения большой протяженности разрезают усадочными швами во избежание появления трещин. Ведь при усадке бетона 0,3 мм/м в сооружении длиной 30 м общая усадка составляет около 10 мм. Массивный бетон высыхает снаружи, а внутри он еще долго остается влажным. Неравномерная усадка вызывает растягивающие напряжения в наружных слоях конструкции и появление внутренних трещин на контакте с заполнителем и в самом цементном камне.

Для снижения усадочных напряжений и сохранения монолитности конструкций стремятся уменьшить усадку бетона. Наибольшую усадку имеет цементный камень. Введение заполнителя уменьшает количество вяжущего в единице объема материала, при этом образуется своеобразный каркас из зерен заполнителя, препятствующий усадке. Поэтому усадка цементного раствора и бетона меньше, чем цементного камня.

Бетон наружных частей гидротехнических сооружений, цементно-бетонных дорог периодически увлажняется и высыхает. Колебания влажности бетона вызывают попеременные деформации усадки и набухания, которые могут вызвать появление микротрещин и разрушение бетона.

Морозостойкость бетона

Морозостойкость бетона определяют путём попеременного замораживания в холодильной камере при температуре от 15 до 20°С и оттаивания в воде при температуре 15-20°С бетонных образцов кубов с размерами ребра 10, 15 или 20 см(в зависимости от наибольшей крупности заполнителя). Образцы испытывают после 28 суток выдержки в камере нормального твердения или через 7 суток после тепловой обработки. Контрольные образцы, предназначенные для испытания на сжатие в эквивалентном возрасте, хранят в камере нормального твердения. Морозостойкость бетона зависит от качества примененных материалов и капиллярной, пористости бетона. Объем капиллярных пор оказывает решающее влияние на водопроницаемость и морозостойкость бетона. Морозостойкость бетона значительно возрастает, когда капиллярная пористость менее 7%. 

Водонепроницаемость бетона

С уменьшением объема капиллярных макропор снижается водонепроницаемость и одновременно повышается морозостойкость бетона. Для уменьшения водонепроницаемости в бетон при его изготовлении вводят уплотняющие (алюминат натрия) и гидрофобизующие добавки. Нефтепродукты (бензин, керосин и др.) имеют меньшее, чем у воды, поверхностное натяжение, поэтому они легче проникают через обычный бетон. Для снижения фильтрации нефтепродуктов в бетонную смесь можно вводить специальные добавки (хлорное железо и др.). Проницаемость бетона по отношению к воде и нефтепродуктам резко уменьшается, если вместо обычного портландцемента применяют расширяющийся. 

Теплофизические свойства бетона

Теплопроводность - наиболее важная теплофизическая характеристика бетона, в особенности применяемого в ограждающих конструкциях зданий.

Теплопроводность тяжелого бетона в воздушно-сухом состоянии 1,2 Вт/(м.°С), т.е. она в 2-4 раза больше, чем у легких бетонов (на пористых заполнителях и ячеистых). Высокая теплопроводность является недостатком тяжелого бетона. Панели наружных стен из тяжелого бетона изготавливают с внутренним слоем утеплителя.

Теплоемкость тяжелого бетона изменяется в узких пределах -0,75-0,92 Вт/(м. С°).

Линейный коэффициент температурного расширения бетона составляет около 0,00001 °С, следовательно, при увеличении температуры на 50 °С расширение достигает примерно 0,5 мм/м. Во избежание растрескивания сооружений большой, протяженности разрезают температурно-усадочными швами.

Крупный заполнитель и раствор, составляющие бетон, имеют различный коэффициент температурного расширения и будут по разному деформироваться при изменении температуры. Большие колебания температуры (более 80°С) смогут вызвать внутреннее растрескивание бетона вследствие различного теплового расширения крупного заполнителя и раствора. Характерные трещины распространяются по поверхности заполнителя, некоторые из них образуются в растворе, а иногда и в слабых зернах заполнителя. Внутреннее растрескивание можно предотвратить, если позаботиться о подборе составляющих бетона с близкими коэффициентами температурного расширения 

4. Марки и классы бетона 

При проектировании бетонных и железобетонных конструкций назначают требуемые характеристики бетона: класс (марку) прочности, марки морозостойкости и водонепроницаемости. 

За проектную марку бетона по прочности на сжатие принимают сопротивление осевому сжатию (кгс/см2) эталонных образцов-кубов.

За проектную марку бетона по прочности на осевое растяжение принимают сопротивление осевому растяжению (кгс/см2) контрольных образцов. Эта марка назначается тогда, когда она имеет главенствующее значение.

Проектная марка бетона по морозостойкости характеризуется числом циклов попеременного замораживания и оттаивания, которое выдерживают образцы в условиях стандартного испытания. Назначается для бетона, подвергающегося многократному воздействию отрицательных температур.

Проектная марка бетона по водонепроницаемости характеризуется односторонним гидростатическим давлением (кгс/см2), при котором образцы бетона не пропускают воду в условиях стандартного испытания. Назначается для бетона, к которому предъявляются требования по плотности и водонепроницаемости.

Проектную марку бетона по прочности на сжатие контролируют путем испытания стандартных бетонных образцов: для монолитных конструкций в возрасте 28 суток, для сборных конструкций - в сроки, установленные для данного вида изделий стандартом или техническими условиями.

Проектную марку бетона монолитных конструкций разрешается устанавливать при специальном обосновании в возрасте 90 или 180 суток в зависимости от сроков загружения, что позволяет экономить цемент.

Прочность бетона определяют путем испытания образцов, которые изготовляют сериями; серия, как правило, состоит из трех образцов.

Предел прочности при растяжении возрастает при повышении марки бетона по прочности при сжатии, однако увеличение сопротивления растяжению замедляется в области высокопрочных бетонов. Поэтому прочность бетона при растяжении составляет 1/10-1/17 предела прочности при сжатии, а предел прочности при изгибе - 1/6-1/10. 

Однородность прочности и класс бетона.

Бетон должен быть однородным - это важнейшее техническое и экономическое требование. Для оценки однородности бетона данной марки используют результаты контрольных испытаний бетонных образцов за определенный период времени, имеется в виду, что стандартные образцы твердели в одинаковых условиях одно и то же время. Прочность бетонных образцов будет колебаться, отклоняясь от среднего значения в большую и меньшую стороны. На прочности сказываются колебания в качестве цемента и заполнителей, точность дозирования составляющих, тщательность приготовления бетонной смеси и другие факторы.

Для повышения однородности бетона необходимо применение цемента и заполнителей гарантированного качества, повышение уровня технологической дисциплины, автоматизация производства.

Следовательно, для нормирования прочности необходимо использовать стандартную характеристику, которая гарантировала бы получение бетона заданной прочности с учетом возможных ее колебаний. Такой характеристикой является класс бетона. 

Класс бетона - это числовая характеристика какого-либо его свойства, принимаемая с гарантированной обеспеченностью 0,95. Это значит, что установленное классом свойство обеспечивается не менее чем в 95 случаях из 100 и лишь в 5-ти случаях можно ожидать его не выполненным. Бетоны подразделяются на классы: В1; В1,5; В2; В2,5; В3,5; В5; В7,5; В10; В12,5; В15; В20; В25; В30; В40; В45; В50; В55; В60. Соотношение между классом и марками бетона по прочности при нормативном коэффициенте вариации v = 13,5% 

Класс бетона

Средняя прочность данного класса, кгс/кв.см

Ближайшая марка бетона

 

В3,5

В5

В7,5

В10

В12,5

В15

В20

В25

В30

В35

В40

В45

В50

В55

В60

46

65

98

131

164

196

262

327

393

458

524

589

655

720

786

М50

М75

М100

М150

М150

М200

М250

М350

М400

М450

М550

М600

М600

М700

М800

Твердение бетона. Прочность бетона нарастает в результате физико-химических процессов взаимодействия цемента с водой, которые нормально проходят в теплых и влажных условиях. Взаимодействие цемента с водой прекращается, если бетон высыхает или замерзает. Раннее высыхание и замерзание бетона непоправимо ухудшает его строение и свойства.

Бетон нуждается в уходе, создающем нормальные условия твердения, в особенности в начальный период после укладки (до 15-28 суток). В теплое время года влагу в бетоне сохраняют путем поливки и укрытия. На поверхность свежеуложенного бетона наносят битумную эмульсию или его укрывают полиэтиленовыми и другими пленками.

Характер нарастания прочности бетонов, изготовленных на портландцементе и твердевших в нормальных условиях (во влажном воздухе с температурой 18-22°С). Приближенно можно считать, что прочность бетона со временем увеличивается примерно по логарифмическому закону: Rn = R28(lgn / lg28), где Rn - прочность бетона в возрасте n сут (не менее трех суток); R28 - марка бетона; n - число дней твердения бетона. Эту формулу используют при ориентировочных расчетах времени распалубки.

Более точно прочность бетона в промежуточные сроки твердения определяется по опытной кривой нарастания прочности бетона, которая может быть построена по результатам испытания образцов 3, 7, 28, 90 - суточного возраста. Бетон при нормальных условиях твердения имеет низкую начальную прочность и только через 7-14 сут приобретает 60-80% марочной прочности 

За марку бетона по морозостойкости - принимают наибольшее число циклов попеременного замораживания и оттаивания, которое при испытании выдерживают образцы установленных размеров без снижения прочности на сжатие более 5% по сравнению с прочностью образцов, испытанных в эквивалентном возрасте, а для дорожного бетона, кроме того, без потери массы более 5%. Установлены марки по морозостойкости: F50, F75, F100, F150, F200, F300, F400, F500. 

По водонепроницаемости  бетон делят на марки W2, W4, W6, W8 и W12, причем марка обозначает давление воды (кгс/см2), при котором образец-цилиндр высотой 15 см не пропускает воду в условиях стандартного испытания. 

5. Применение тяжелого бетона 

Тяжелый бетон является основным видом бетона для железобетонных конструкций. Проектные марки тяжелого бетона по прочности на сжатие: М50, М75, М100, М150, М200, М250, М300, М350, М400, М450, М500, М600, М700, М800. Марки М250, М350 и М450 предусматривают при условии, что это приводит к экономии цемента. Бетоны высоких марок (М500-М800) нужны для предварительно напряженных железобетонных конструкций. При этом надо учесть, что бетон на плотном заполнителе имеет меньшую усадку и ползучесть по сравнению с легким бетоном на пористом заполнителе и ячеистым бетоном. Поэтому и потери предварительного напряжения арматуры при тяжелом бетоне меньше. Кроме того, он хорошо защищает стальную арматуру от коррозии, что особенно важно для предварительно напряженных конструкций, работающих в агрессивных условиях. 

Высокопрочный бетон

Высокопрочный бетон М600-М1000 получают на основе высокопрочного портландцемента, промытого песка и щебня не ниже М1200-М1400.

Малоподвижные и жесткие смеси приготовляют с низкими В/Ц = 0,27-0,45 в бетоносмесителях принудительного действия (например, турбинных). Для плотной укладки этих смесей при формовании изделий и конструкций используют интенсивное уплотнение: вибрирование с пригрузом, двойное вибрирование, сильное прессование. Значительно облегчают уплотнение суперпластификаторы, не понижающие прочности бетона.

Высокопрочные бетоны являются, как правило, и быстротвердеющими. Однако для ускоренного достижения отпускной прочности бетона в изделиях обычно требуется тепловая обработка, которая может проводиться по сокращенному режиму. Новые особо быстротвердеющие цементы дают возможность обойтись без тепловой обработки, так как бетон достигает нужной прочности в «естественных» условиях твердения при температуре 20-25°С.

Проектные марки тяжелого бетона по прочности на осевое растяжение: 10, 15, 20, 25, 30, 35, 40. Высокое сопротивление растяжению требуется от дорожного, аэродромного, гидротехнического и других специальных бетонов.

Тяжелый бетон хорошо сопротивляется поверхностному износу, что важно для цементно-бетонных дорог и полов промышленных зданий. Хорошие защитные свойства против радиоактивных излучений предопределяют его широкое применение в конструкциях биологической защиты атомных реакторов.

Проектные марки тяжелого бетона по морозостойкости: 50, 75, 100, 150, 200, 300, 400 и 500 

Бетоны высокой морозостойкости

Бетоны высокой морозостойкости применяют для тех частей сооружений, которые подвергаются многократному замораживанию и оттаиванию во влажном состоянии. Эта зона переменного уровня гидротехнических сооружений, конструкции железобетонных градирен, цементно-бетонные покрытия дорог и аэродромов и т.п.

Морозостойкость зависит от качества исходных материалов, состава бетона и тщательности производства работ, которые и определяют структуру бетона.

Рекомендуется применять сульфатостойкий портландцемент, являющийся одновременно и морозостойким.

Для повышения морозостойкости и водонепроницаемости бетона применяют добавки поверхностно-активных веществ. 

Мелкозернистый бетон

Мелкозернистый (цементный) бетон применяют при изготовлении тонкостенных, в том числе армоцементных конструкций. Его целесообразно использовать и для обычных железобетонных конструкций, когда на месте нет крупного заполнителя, а возить заполнитель далеко и дорого. Мелкозернистый бетон отличается от обычного большим содержанием цементного камня, поэтому его усадка и ползучесть несколько выше.

Главные недостатки тяжелого бетона - большая плотность и высокая теплопроводность. 

 6. Легкие бетоны 

Бетоны на пористых заполнителях.

Материалы для изготовления легкого бетона

Для легкого бетона используют быстротвердеющий и обычный портландцементы, а также шлакопортландцемент. Применяют в основном неорганические пористые заполнители. Для теплоизоляционных и некоторых видов конструкционно-теплоизоляционных легких бетонов используют и органические заполнители, приготовленные из древесины, стеблей хлопчатника, костры, гранулы пенополистйрола (стиропорбетон) и др.

Неорганические пористые заполнители отличаются большим разнообразием, их разделяют на природные и искусственные. Природные пористые заполнители получают путем частичного дробления и рассева или только рассева горных пород (пемзы, вулканического туфа, известняка-ракушечника и др.). Искусственные пористые заполнители являются продуктами термической обработки минерального сырья и разделяются на специально изготовленные и побочные продукты промышленности (топливные шлаки и золы, отвальные металлургические шлаки и др.).  

Керамзитовый гравий получают путем обжига гранул, приготовленных из вспучивающихся глин. Это легкий и прочный заполнитель насыпной плотностью 250-800 кг/м3. В изломе гранула керамзита имеет структуру застывшей пены. Спекшаяся оболочка, покрывающая гранулу, придает ей высокую прочность. Керамзит, обладающий высокой прочностью и легкостью, является основным видом пористого заполнителя. Керамзитовый песок (зерна до 5 мм) получают при производстве керамзитового гравия (правда, в небольших количествах), а также по методу кипящего слоя, обжигом глиняных гранул во взвешенном состоянии. Кроме того, его можно получать дроблением зерен гравия. 

Шлаковую пемзу изготовляют путем быстрого охлаждения расплава металлургических (обычно доменных) шлаков, приводящего к вспучиванию. Куски шлаковой пемзы дробят и рассеивают, получая пористый щебень. Производство шлаковой пемзы распространено в районах развитой металлургией. Здесь себестоимость шлаковой пемзы ниже, чём керамзита. 

Гранулированный металлургический шлак получают в виде крупного песка с пористыми зернами размером 5-7 мм, иногда до 10 мм. 

Вспученный перлит изготовляют путем обжига водосодержащих вулканических стеклообразных пород (перлитов, обсидианов). При температуре 950-1200°С вода выделяется и перлит увеличивается в объеме 10-20 раз. Вспученный перлит применяют, для производства легких бетонов и теплоизоляционных изделий. 

Вспученный вермикулит - пористый сыпучий материал, полученный путем обжига водосодержащих слюд. Этот заполнитель используют для изготовления теплоизоляционных легких бетонов. 

Топливные отходы (топливные шлаки и золы) образуются в качестве побочного продукта при сжигании антрацита, каменного угля, бурого угля и других видов твердого топлива. На основе золы выпускают зольный гравий. 

Топливные шлаки - пористые кусковые материалы, получающиеся в топке в результате спекания и вспучивания неорганических (в основном глинистых) примесей, содержащихся в угле. Шлаки подвергаются частичному дроблению, рассеву и обогащению для удаления вредных примесей (несгоревшего угля, золы .и др.). на основе зол выпускают зольный и глинозольный гравий. 

Аглопорит получают при обжиге глиносодержащего сырья (с добавкой 8-10% топлива) на решетках агломерационных машин. Каменный уголь выгорает, а частицы сырья спекаются. Применяют местное сырье: легкоплавкие глинистые и лессовые породы, а также отходы промышленности - золы, топливные шлаки и угесодержащие шахтные породы. Аглопорит выпускают в виде пориотого песка, щебня и гравия. 

Шунгизит изготовляют обжигом шунгитовых сланцевых пород.

Пористые заполнители, так же как и плотные, делят на крупные (пористый гравий или щебень) с размером кусков 5-40 мм и мелкие (пористый песок), состоящие из частиц менее 5 мм. Пористый песок рассеивают на две фракций: до 1,2мм (мелкий песок) и 1,2-5 мм (крупный песок). Пористый щебень (гравий) следует разделять на фракции - 5-10, 10-20, 20-40 мм. По насыпной плотности в сухом состоянии (кг/м3) пористые заполнители разделяют на марки 250..... 1100. 

Свойства легкого бетона.

Качество легкого бетона оценивают двумя важнейшими показателями: классом по прочности и маркой по средней плотности. Легкий бетон плотной структуры по прочности на сжатие (МПа) имеет классы: В2,5...В40, по прочности на осевое растяжение (МПа) -В0,8...В3,2. Для теплоизоляционных бетонов предусматриваются классы: В0.35, В0,75, В1. Для легких бетонов запроектированных без учета классов, показатели прочности (кг/см2) характеризуют марками: М35-М500.

Для изготовления высокопрочных легких бетонов (имеющих плотность 1600-1800 кг/м3) применяют более прочный пористый заполнитель (с насыпной плотностью 600-800 кг/м3), а пористый песок частично или полностью заменяют плотным.

В зависимости от плотности в сухом состоянии (кг/м3) легкие бетоны подразделяются на марки: Д200...Д2000.

Наиболее важной наряду с прочностью характеристикой легкого бетона является плотность. В зависимости от назначения легкие бетоны делят на следующие группы: теплоизоляционные с плотностью до 500 кг/м3; конструкционно-теплоизоляционные (для ограждающих конструкций - наружных стен, покрытий зданий) с плотностью 500-1400 кг/м3; конструкционные с плотностью 1400-1800 кг/м3.

Уменьшить плотность легких бетонов можно путем образования в цементном камне мелких замкнутых пор. Для поризации цементного камня, являющегося самой тяжелой составной частью легкого бетона, используют небольшие количества пенообразующих или газообразующих веществ.

Теплопроводность легких бетонов зависит в основном от плотности и влажности. Увеличение объемной влажности легкого бетона на 1% повышает теплопроводность на 0,016-0,035 Вт/(м.°С). В зависимости от теплопроводности легкого бетона толщина наружной стены может изменяться от 20 до 40 см. Наружные ограждающие конструкции из легких бетонов подвергаются воздействию попеременного замораживания и оттаивания, увлажнения и высыхания. Поэтому легкие бетоны, применяемые для наружных стен, покрытий зданий, а также для конструкций мостов, гидротехнических сооружений, должны обладать определенной морозостойкостью. 

По морозостойкости легкие бетоны делят на марки: F25... F500; по водонепроницаемости W0,2...W1,2. Для наружных стен обычно применяют бетоны с морозостойкостью не менее 15-25 циклов попеременного замораживания и оттаивания. Возможность получения легких бетонов с высокой морозостойкостью и малой водопроницаемостью значительно расширяет области их применения. Бетоны на пористых заполнителях уже успешно используют в мостостроении, гидротехническом строительстве.

Водонепроницаемость плотных конструкционных легких бетонов может быть высокой. Керамзитобетон с расходом цемента 300-350 кг/м3 не пропускает воду даже при давлении 2 МПа. Малая водопроницаемость плотных легких бетонов подтверждается долголетней эксплуатацией возведенных из них гидротехнических сооружений (например, в Армении и Грузии), а также испытанием напорных железобетонных труб. Характерно, что со временем водонепроницаемость легких бетонов повышается. 

Крупнопористый бетон

В состав крупнопористого (беспесчаного) бетона входят гравий или щебень крупностью 5-20 мм, портландцемент или шлакопортландцемент МЗОО-М400 и вода. За счет исключения песка из состава крупнопористого бетона его плотность уменьшается примерно на 600-700 кг/мЗ и составляет 1700-1900 кг/м3. Отсутствие песка и ограниченный расход цемента (70-150 кг/м3) позволяют получить пористый бетон с теплопроводностью 0,55-0,8 Вт/(м-°С) и марками М15-М75. Крупнопористый бетон целесообразно применять в районах богатых гравием. Из крупнопористого бетона возводят монолитные наружные стены зданий, изготовляют крупные стеновые блоки. Стены из крупнопористого бетона оштукатуривают с двух сторон, чтобы устранить продувание.

Крупнопористый бетон на пористом заполнителе (керамзитовом гравии и т.п.) имеет небольшую плотность (500-700 кг/м3) и используется как теплоизоляционный материал. 

Гипсобетон

Гипсобетон изготовляют на основе строительного гипса, высокопрочного гипса и гипсоцементнопуццоланового вяжущего, обеспечивающего получение водостойких изделий. Для уменьшения плотности стремятся применять пористые заполнители (топливные шлаки, керамзитовый гравий, шлаковую пемзу и т.п.), а также комбинированный заполнитель из кварцевого песка и древесных пилок. С этой целью вводят породообразующие добавки, позволяющие снизить плотность гипсобетона. Для повышения прочности на изгиб и уменьшения хрупкости в состав гипсобетона вводят волокнистые наполнители (древесные волокна, измельченную бумажную массу и т.п.).

Крупноразмерные изделия изготовляют способом непрерывного вибропроката на специальных станах. Отформованные затвердевшие изделия высушивают в сушильных камерах.

Плотность гипсобетонов в зависимости от применяемого заполнителя и водогипсового отношения составляет 1000-1600 кг/м3, а марки М25 и М50.

Гипсобетон широко применяют для изготовления сплошных и пустотелых плит перегородок. Плиты можно армировать штукатурной дранью, камышом и т.п. Стальная арматура (проволока) должна быть защищена от коррозии специальной обмазкой (цементно-казеиновой, битумной или полимерной). На водостойком гипсоцементнопуццолановом вяжущем изготовляют мелкие камни и крупные блоки для внутренних и наружных стен жилых, сельскохозяйственных производственных зданий с относительной влажностью помещений до 75%. 

7. Ячеистые бетоны 

Ячеистые бетоны являются разновидностью легкого бетона, его получают в результате затвердевания вспученной при помощи порообразователя смеси вяжущего, кремнеземистого компонента и воды. При вспучивании исходной смеси образуется характерная «ячеистая» структура бетона с равномерно распределенными по объему воздушными порами. Благодаря этому ячеистый бетон имеет небольшую плотность и малую теплопроводность.

Пористость ячеистого бетона сравнительно легко регулировать в процессе изготовления, в результате получают бетоны разной плотности и назначения.

Ячеистые бетоны делят на три группы: теплоизоляционные плотностью в высушенном состоянии не более 500 кг/м3; конструкционно-теплоизоляционные (для ограждающих конструкций) плотностью 500-900 кг/м3; конструкционные (для железобетона) плотностью 900-1200 кг/м3. 

Материалы для ячеистого бетона.

Вяжущим для цементных ячеистых бетонов обычно служит портландцемент.

Бесцементные ячеистые бетоны (газо- и пеносиликат) автоклавного твердения изготовляют, применяя молотую негашеную известь.

Вяжущее применяют совместно с кремнеземистым компонентом, содержащим двуоксид кремния. Кремнеземистый компонент (молотый кварцевый песок, зола-унос ТЭС и молотый гранулированный доменный шлак) уменьшают расход вяжущего, усадку бетона и повышают качество ячеистого бетона. Кварцевый песок обычно размалывают мокрым способом и применяют в виде песчаного шлама. Измельчение увеличивает удельную поверхность кремнеземистого компонента и повышает его химическую активность.

Возрастает применение побочных продуктов промышленности (зола-уноса, доменных шлаков, нефелинового шлама) для изготовления ячеистого бетона.

Вспучившие теста вяжущего может осуществляться двумя способами: химическим, когда в тесто вяжущего вводят газообразующую добавку и в смеси происходят химические реакции, сопровождающиеся выделением газа; механическим, заключающимся в том, что тесто вяжущего смешивают с отдельно приготовленной устойчивой пеной.

В зависимости от способа изготовления ячеистые бетоны делят на газобетон и пенобетон. У нас и за рубежом развивается производство преимущественно газобетона. Его технология более проста и позволяет получить материал пониженной плотности со стабильными свойствами. Пена же не отличается стабильностью, что вызывает колебания плотности и прочности пенобетона. 

Газобетон и газосиликат.

Газобетон приготовляют из смеси портландцемента (часто с добавкой воздушной извести или едкого натра), кремнеземистого компонента и газообразователя.

По типу химических реакций газообразователи делят на следующие виды: вступающие в химические взаимодействие с вяжущим или продуктами его гидратации (алюминиевая пудра); разлагающиеся с выделением газа (пергидроль); взаимодействующие между собой и выделяющие газ в результате обменных реакций (например, молотый известняк и соляная кислота).

Чаще всего газообразователем служит алюминиевая пудра, которая, реагируя с гидратом окиси кальция, выделяет водород.

Литьевая технология предусматривает отливку изделий, как Правило, в отдельных формах из текучих смесей, содержащих до 50-60% воды от массы сухих компонентов (водотвердое отношение В/Т = 0,5-0,6). При изготовлении газобетона применяемые материалы - вяжущее, песчаный шлам и вода, дозируют и подают в самоходный газобетоносмеситель, в котором их перемешивают 4-5 мин; затем в приготовленную смесь вливают водную суспензию алюминиевой пудры и после последующего перемешивания теста с алюминиевой пудрой газобетонную смесь заливают в металлические формы на определенную высоту с таким расчетом, чтобы после вспучивания формы были заполнены доверху. Избыток смеси («горбушку») после схватывания срезают проволочными струнами. Для ускорения газообразования, а также процессов схватывания и твердения применяют «горячие» смеси на подогретой воде с температурой в момент заливки в формы около 40°С.

Тепловую обработку бетона производят преимущественно в автоклавах в среде насыщенного водяного пара при температуре 175-200°С и давлении 0,8-1,3 МПа.

Вибрационная технология газобетона заключается в том, что во время перемешивания в смесителе и вспучивания в форме смесь подвергается вибрации. В смеси, подвергающейся вибрированию, ускоряется газовыделение - вспучивание заканчивается в течение 5-7 мин вместо 15-20 мин при литьевой технологии. После прекращения вибрирования газобетонная смесь быстро (через 0,5-1,5 ч) приобретает структурную прочность, позволяющую разрезать изделие на блоки, время автоклавной обработки также сокращается.

Резательная технология изготовления изделий из ячеистого бетона предусматривает формование вначале большого массива (объемом 10-12 м3, высотой до 2 м). После того как бетон наберет структурную прочность, массив разрезают в горизонтальном и вертикальном направлениях на прямоугольные элементы, а затем подвергают тепловой обработке. Полученные элементы калибруют на специальной фрезерной машине, а затем отделывают их фасадные поверхности. Из готовых элементов, имеющих точные размеры собирают на клею плоские или объемные конструкции, используя стяжную арматуру. Таким путем получают большие стеновые панели размером на одну или две комнаты и высотой на этаж.  

Газосиликат автоклавного твердения в отличие от газобетона изготовляют на основе известково-кремнеземистого вяжущего, используя местные дешевые материалы - воздушную известь и песок, золу-унос и металлургические шлаки.

Изделия из газосиликата приобретают нужную прочность и морозостойкость только после автоклавной обработки, обеспечивающей химическое взаимодействие между известью и кремнеземистым компонентом и образование нерастворимых в воде гидросиликатов кальция. 

Пенобетон и пеносиликат.

Пенобетон приготовляют, смешивая раздельно приготовленные растворную смесь и пену, образующую воздушные ячейки. Растворную смесь получают из вяжущего (цемента или воздушной извести) кремнеземистого компонента и воды, как и в технологии газобетона.

Пену приготовляют в лопастных пеновзбивателях или центробежных насосах из водного раствора пенообразователей, содержащих поверхностно-активные вещества. Применяют клееканифольный, смолосапоииновый, алюмосульфо-нафтеновый и синтетические пенообразователи. Стабилизаторами пены служат добавки раствора животного клея, жидкого стекла или сернокислого железа; минерализаторами же являются цемент и известь.

Пеносиликат, как и газосиликат, изготовляют на основе известково-кремнеземистого вяжущего. 

Свойства ячеистого бетона.

Прочность и плотность являются главными показателями качества ячеистого бетона. Плотность, колеблющаяся от 300 до 1200 кг/м3, косвенно характеризует пористость ячеистого бетона (соответственно 85-60%).

Установлены следующие марки ячеистых бетонов по прочности при сжатии: М15, М25, М35, М50, М75, М100, М150. Классы по прочности на сжатие находятся в пределах ВО,35...В12,5.

Водопоглощение и морозостойкость зависят от величины и характера пористости ячеистого бетона и плотности перегородок между макропорами (ячейками). Для снижения водопоглощения и повышения морозостойкости стремятся к созданию ячеистой структуры с замкнутыми порами. Этому способствует вибрационная технология, так как при вибрации газобетонной смеси разрушаются крупные ячейки, снижающие морозостойкость и однородность материала.

Установлены следующие марки ячеистого бетона по морозостойкости: F15, F25, F35, F50, F75, F100. Для панелей наружных стен применяют ячеистый бетон марок F15, F25 в зависимости от влажности атмосферы в помещениях и климатических условий. Более высокая морозостойкость требуется от конструкционного ячеистого бетона, подвергающегося многократному замораживанию и оттаиванию.

Теплопроводность ячеистого бетона зависит от плотности и влажности, например при плотности 600 кг/м3, теплопроводность в сухом состоянии 0,14Вт/(м•°С), при влажности 8%-0,22 Вт/(м•°С).

Усадка зависит от состава ячеистого бетона, плотности и условий твердения. Ячеистый бетон плотностью 700-800 кг/м3 в воздухе с 70-80%-ной относительной влажностью и температурой 20°С имеет усадку 0,4-0,6 мм/м.

Применяют ячеистые бетоны для легких железобетонных конструкций и теплоизоляции. Широко распространены конструкционно-теплоизоляционные ячеистые бетоны. Из них изготовляют панели наружных стен и покрытий зданий, неармированные стеновые и теплоизоляционные блоки, камни для стен.

Конструкции из ячеистых бетонов долговечны в зданиях с сухим и нормальным режимами помещений при относительной влажности воздуха 60-70%. 

8. Особые виды бетона 

Гидротехнический бетон

Гидротехнический бетон предназначается для конструкций, находящихся в воде или периодически соприкасающихся с водой, поэтому он должен обладать свойствами, необходимыми для длительной нормальной службы этих конструкций в данных климатических и эксплуатационных условиях.

Гидротехнический бетон должен иметь минимальную стоимость и удовлетворять требованиям по прочности, долговечности, водостойкости, водонепроницаемости, морозостойкости, тепловыделению при твердении, усадке и трещиностойкости. Противоречивые на первый взгляд требования высокого качества и низкой стоимости можно выполнить, если выделить наружную зону массивного сооружения, подвергающуюся непосредственному влиянию среды, и внутреннюю зону.

Бетон наружной зоны в зависимости от расположения в сооружении по отношению к уровню воды делят на бетон подводный (находящийся постоянно в воде), переменного уровня воды и надводный, находящийся выше уровня воды.

В самых суровых условиях бетон, расположенный в области переменного уровня воды, многократно замерзает и оттаивает, находясь все время во влажном состоянии. Это же относится к бетону водосливной грани плотин, морских сооружений (причалов, пирсов, молов и т.д.), градирен, служащих для охлаждения оборотной воды на тепловых электростанциях, предприятиях металлургической и химической промышленности. Этот бетон должен обладать высокой плотностью и морозостойкостью.  

Бетон внутренней зоны

Бетон внутренней зоны массивных конструкций защищен наружным бетоном от непосредственного воздействия среды. Главное требование к этому бетону - минимальная величина тепловыделения при твердении, так как неравномерный разогрев массива может вызвать образование температурных трещин. Малое тепловыделение имеет шлакопортландцемент, поэтому его и применяют для внутримассивного бетона наряду с пуццолановым портландцементом. Требования к физико-механическим свойствам бетона внутренней зоны не столь высоки: марки по прочности М100, М150, по водонепроницаемости W2, W4.

Марку бетона по водонепроницаемости назначают в зависимости от напорного градиента, равного отношению максимального напора к толщине конструкции или к толщине бетона наружной зоны конструкции (при наличии зональной разрезки):

Напорный градиент до 55-1010-1212 и более

Марка бетона по водонепроницаемостиW4W6W8W12

Для конструкций с напорным градиентом более 12 на основании опытов могут назначаться марки по водонепроницаемости выше W12.

Стойкость бетона к воздействиям среды определяется комплексом его свойств: морозостойкостью, малым водопоглощением, небольшими деформациями усадки.

Марку бетона по морозостойкости назначают в зависимости от климатических условий и числа расчетных циклов попеременного замораживания и оттаивания в течение года. Установлены следующие марки гидротехнического бетона по морозостойкости: F100, F150, F200, F300, F400, F500.

Водопоглощение гидротехнического бетона характеризуется величиной капиллярной всасываемости при погружении в воду образцов 28-суточного возраста, высушенных до постоянной массы при температуре 105°С.

Водопоглощение бетона зоны переменного уровня воды не должно превышать 5% от массы высушенных образцов), для бетонов других зон - не более 7%.

Линейная усадка бетона при относительной влажности воздуха 60% и температуре 18°С в возрасте 28 сут не превышает 0,3 мм/м, в возрасте 180 суток - 0,7 мм/м. Предельно допустимые величины набухания установлены: в возрасте 28 сут - 0,1 мм/м, 180 сут -0,3 мм/м (по сравнению с высушенными до постоянной массы при 60°С эталонными образцами).  

Жаростойкий бетон

Жаростойкий бетон предназначается для промышленных агрегатов (облицовки котлов, футеровки печей и т.п.) и строительных конструкций, подверженных нагреванию (например, для дымовых труб). При действии высокой температуры на цементный камень происходит обезвоживание кристаллогидратов и разложение гидроксида кальция с образованием СаО. Оксид кальция при воздействии влаги гидратируется с увеличением объема и вызывает растрескивание бетона. Поэтому в жаростойкий бетон на портландцементе вводят тонко измельченные материалы, содержащие активный кремнезем.

Жаростойкий бетон изготовляют на портландцементе с активной минеральной добавкой (пемзы, золы, доменного гранулированного шлака, шамота).

Шлакопортландцемент уже содержит добавку доменного гранулированного шлака и может успешно применяться при температурах до 700°С. Портландцемент и шлакопортландцемент нельзя применять для жаростойкого бетона, подвергающегося кислой коррозии (например, действию сернистого ангидрида в дымовых трубах). В этом случае следует применить бетон на жидком стекле. Он хорошо противостоит кислотной коррозии и сохраняет свою прочность при нагреве до 1000°С.

Еще большей огнеупорностью (не ниже 1580°С) обладает высокоглиноземистый цемент с содержанием глинозема 65-80%; в сочетании с высокоогнеупорным заполнителем его применяют при температурах до 1700°С.

Столь же высокой огнеупорности позволяют достигнуть фосфатные и алюмофосфатные связующие: фосфорная кислота алюмофосфаты и магнийфосфаты.

Жаростойкие бетоны на фосфатных связующих можно применять при температурах до 1700°С, они имеют небольшую огневую усадку, термически стойки, хорошо сопротивляются истиранию.

Заполнитель для жаростойкого бетона должен быть не только стойким при высоких температурах, но и обладать равномерным температурным расширением.

Бескварцевые изверженные горные породы как плотные (сиенит, диорит, диабаз, габбро), так и пористые (пемза, вулканические туфы, пеплы) можно использовать для жаростойкого бетона, применяемого при температурах до 700°С.

Для бетона, работающего при температурах 700-900°С, целесообразно применять бой обычного глиняного кирпича и доменные отвальные шлаки с модулем основности не более 1, не подверженные распаду.

При более высоких температурах заполнителем служат огнеупорные материалы: кусковой шамот, хромитовая руда, бой шамотных, хроммагнезитовых и других огнеупорных изделий.  

Кислотоупорный бетон

Вяжущим для кислотоупорного бетона является жидкое стекло с полимерной добавкой. Для повышения плотности бетона вводят наполнители: кислотостойкие минеральные порошки, получаемые измельчением чистого кварцевого песка, андезита, базальта, диабаза и т.п. В качестве отвердителя используют кремнефтористый натрий, в качестве заполнителя - кварцевый песок, щебень из гранита, кварцита, андезита и других стойких пород. После укладки с вибрированием бетон выдерживает не менее 10 сут на воздухе (без поливки) при 15-20°С. После отвердения рекомендуется поверхность бетона «окислить», т.е. смочить раствором серной или соляной кислот. Кислотоупорный бетон хорошо выдерживает действие концентрированных кислот; вода разрушает его за 5-10 лет, щелочные растворы разрушают быстрее. Кислотоупорный бетон применяют в качестве защитных слоев (футеровок) по железобетону и металлу.  

Бетон для защиты от радиоактивного воздействия

Материалы, применяемые для сооружения бетонной защиты, должны обеспечить возможно большую плотность бетона и определенное содержание водорода - обычно в виде воды, связанной с вяжущим.

Вяжущим служит портландцемент или шлакопортландцемент, который выделяет при гидратации немного тепла и поэтому хорошо зарекомендовал себя в массивных защитных конструкциях.

В качестве заполнителей используют тяжелые природные или искусственные материалы. Для особо тяжелого бетона применяют в качестве заполнителя близкие по своим свойствам железные руды - магнетит и гематит с содержанием железа не менее 60%. Бурый железняк (лимонит) позволяет значительно повысить содержание связанной воды в гидратном бетоне.

Баритовые руды (или барит), содержащие около 80% сульфата бария, применяют как мелкий и крупный заполнитель. Металлический крупный заполнитель получают из отходов металлообрабатывающихзаводов, мелким заполнителем служит кварцевый или лимонитовый песок, а также чугунная дробь. Свинцовая дробь дорогая и ее применяют при малой толщине защиты, для заделки отверстий в конструкциях, когда требуется бетон с повышенными защитными свойствами. Плотность бетона на металлическом заполнителе достигает 6000 кг/м3.

Бетон должен иметь заданную марку по прочности и относительно низкий модуль упругости, что позволяет снизить величину растягивающих напряжений во внешней зоне защиты, вызываемых односторонним нагревом. Кроме того, бетон, расположенный у активного корпуса реактора, должен обладать достаточной стойкостью к воздействию излучений, быть огнестойким и жаростойким даже при температурах, возможных при аварийном режиме реактоpa. Для массивных конструкций желательно меньшая теплота гидратации цемента и минимальная усадка бетона (для предотвращения температурных и усадочных трещин), а также небольшая величина коэффициента температурного расширения.  

Серный бетон

Серный бетон представляет собой смесь сухих заполнителей -щебень, песок, минеральная мука, нагретых до 140-150°С, и расплавленного серного вяжущего при температуре перемешивания 145-155°С. Использование серы в строительстве известно с середины прошлого века: в виде растворов и мастик для заливки швов каменных кладок, для заделки металлических стоек перил лестничных маршей и заделки металлических связей каменных конструкций взамен расплавленного свинца.

Процесс получения серного бетона основан на свойстве серы изменять свою вязкость при различной температуре - при 1,19-122°С сера полностью переходит из кристаллического состояния в расплав. В качестве заполнителей используют кислотоупорный цемент, андезитовую или кварцевую муку, кварцевый песок и другие кислотостойкие минеральные наполнители. Во многих странах серный бетон применяют для изготовления свай, фундаментов, емкостей, покрытий дорог и химстойких полов.

9. Строительные растворы 

Общие сведения

Строительный раствор - это искусственный каменный материал, полученный в результате затвердевания растворной смеси, состоящей из вяжущего вещества, воды, мелкого заполнителя и добавок, улучшающих свойства смеси и растворов. Крупный заполнитель отсутствует, так как раствор применяют в виде тонких слоев (шов каменной кладки, штукатурка и т.п.). Для изготовления строительных растворов чаще используют неорганические вяжущие вещества (цементы, воздушную известь и строительный гипс).

Строительные растворы разделяют в зависимости от вида вяжущего вещества, величины плотности и назначения.

По виду вяжущего различают растворы цементные, известковые, гипсовые и смешанные (цементно-известковые, цементно-глиняные, известково-гипсовые и др.).

По плотности различают: тяжелые растворы плотностью более 1500 кг/м3, изготовляемые обычно на кварцевом песке; легкие растворы плотностью менее 1500 кг/м3, изготовляемые на пористом мелком заполнителе и с породообразующими добавками.

По назначению различают строительные растворы: кладочные - для каменной кладки стен, фундаментов, столбов, сводов и др., штукатурные для оштукатуривания внутренних стен, потолков, фасадов зданий; монтажные - для заполнения швов между крупными элементами (панелями, блоками и т.п.) при монтаже зданий и сооружений из готовых сборных конструкций и деталей; специальные растворы (декоративные, гидроизоляционные, тампонажные и др.).  

Материалы для изготовления растворных смесей

Вяжущие вещества. Применяют портландцемент и шлакопортландцемент, принимают марку цемента в 3-4 раза выше марки раствора. Воздушную известь в виде известкового теста вводят в смеситель при изготовлении растворной смеси; реже используют молотую негашеную известь. Строительный гипс входит в состав гипсовых и известково-гипсовые растворов.  

Пески применяют природные - кварцевые, полевошпатовые, также искусственные - дробленые из плотных горных пород и пориистых пород; из искусственных материалов (пемзовые, керамзитовые, перлитовые и т.п.). Пористые пески служат для приготовления легких растворов.. Если песок содержит крупные включения (комья глины и др.), то его просеивают. Для кирпичной кладки применяют растворы на песках с зернами не более 2 мм. Для растворов марки M100 и выше пески должны удовлетворять тем же требованиям в отношении содержания вредных примесей, что и пески для изготовления бетона. Для растворов марки М50 и ниже допускается но соглашению сторон содержание пылевидных частиц до 20% по массе.  

Пластифицирующие добавки. Чаще всего растворные смеси укладывают тонким слоем на пористое основание, способное отсасывать воду (кирпич, бетоны легкие, ячеистые и т.п.). Чтобы сохранить удобоукладываемость растворных смесей при укладке на пористое основание, в них вводят неорганические и органические пластифицирующие добавки, повышающие способность растворной смеси удерживать воду.

Неорганические дисперсные добавки состоят из мелких частиц, хорошо удерживающих воду (известь, глина, зола ТЭС, диатомит, молотый доменный шлак и тп.). Глина, используемая в качестве пластифицирующей добавки, не должна содержать органических примесей и легкорастворимых солей, вызывающих появление «выцветов» на фасадах зданий. Глину вводят в растворную смесь в виде жидкого теста.

Органические поверхностно-активные пластифицирующие и воздухововлеквющие добавки, омыленный древесный пек, канифольное мыло, мылонафт, ЛСТ и другие вводят в количестве 0,1-0,3% от массы вяжущего. Они не только улучшают удобоукладываемость растворных смесей, но также повышают морозостойкость, снижают водопоглощение и усадку раствора.  

В растворы, применяемые для зимней кладки и штукатурки, добавляют ускорители твердения, понижающие температуру замерзания растворной смеси: хлористый кальций, поташ, хлористый натрий, хлорную известь и др.  

Свойства растворных смесей

Удобоукладываемость - это свойство растворной смеси легко укладываться плотным и тонким слоем на пористое основание и не расслаиваться при хранении, перевозке и перекачивании растворонасосами. Она зависит от подвижности и водоудерживающей способности смеси.

Подвижность растворных смесей характеризуется глубиной погружения металлического конуса (массой 300 г) стандартного прибора (рис. 10.1). Подвижность назначают в зависимости от вида раствора и отсасывающей способности основания. Для кирпичной кладки подвижность растворов составляет 9-13 см, для заполнения швов между панелями и другими сборными элементами - 4-6 см, а для вибрирования бутовой кладки - 1-3 см.

Водоудерживающая способность - это свойство растворной смеси сохранять воду при укладке на пористое основание, что необходимо для сохранения подвижности смеси, предотвращения расслоения и хорошего сцепления раствора с пористым основанием (кирпичом и т.п.). Водоудерживающую способность увеличивают путем введения в растворную смесь неорганических дисперсных добавок и органических пластификаторов. Смесь с этими добавками отдает воду пористому основанию постепенно, при этом он становится плотнее, хорошо сцепляется с кирпичом, отчего кладка становится прочнее.

От удобоукладываемости растворной смеси зависит качество каменной кладки. Правильно подобранная растворная смесь заполняет неровности, трещины, углубления в кирпиче или камне, поэтому получается большая площадь контакта между раствором и кирпичом (камнем), в результате прочность и монолитность кладки возрастает. Увеличивается и долговечность наружных стен.  

 10. Специальные растворы 

Кладочные, монтажные и штукатурные растворы

Основными свойствами растворов являются: прочность (марка) к заданному сроку твердения, сцепление с основанием, морозостойкость и деформативные характеристики: усадка в процессе твердения, влияющая на трещиностойкость, модуль упругости, коэффициент Пуассона.

Прочность при сжатии определяют испытанием образцов-кубиков с длиной ребра 7,07 см в возрасте, установленном в стандарте или технических условиях на данный вид раствора. Изготовление образцов из растворной смеси подвижностью менее 5 см производят в обычных формах с поддоном, а из смеси с подвижностью 5 см и более - в формах без поддона, установленных на отсасывающем основании-кирпиче (покрытом смоченной водой газетной бумагой).

Прочность смешанных растворов зависит от количества введенной в раствор извести или глины. На основании закономерностей, управляющих прочностью растворов, составлены таблицы рекомендуемых составов разных марок, которыми широко пользуются на практике.

Строительные растворы по прочности в 28-суточном возрасте при сжатии делят на марки: 4, 10, 25, 50, 75, 100, 150, 200. Растворы марок 4 и 10 изготовляют на воздушной и гидравлической извести и др.

Для каменной кладки наружных стен зданий применяют главным образом цементные и смешанные растворы (цементно-известковые и цементно-глиняные) марок 10, 25 и 50 в зависимости от влажностных условий и требуемой долговечности здания. В кладке перемычек, простенков, карнизов, столбов марка может быть повышена до 100.

Виброкирпичные панели изготовляют с применением растворов марки 75, 100, 150, приготовленных на портландцементе и шлакопортландцементе.

Монтажные растворы для заполнения горизонтальных швов при монтаже стен из легкобетонных панелей должны иметь марку не ниже 50, а для панелей из тяжелого бетона - не ниже 100.

Минимальные расходы цемента для растворов различного назначения 75-125 кг/м3 песка принимают для подземной кладки зданий в зависимости от относительной влажности воздуха в помещениях, а для кладки фундаментов - в соответствии с влажностью грунтов.

Для кладки во влажных грунтах и ниже уровня грунтовых вод применяют растворы на портландцементе с активными минеральными добавками или на шлакопортландцементе (с минимальным расходом цемента 125 кг/м3).

Понижение температуры замедляет рост прочности растворов.

Поэтому в зимнее время широко применяют растворы с химическими добавками (поташа, нитрата натрия и др.), понижающими температуру замерзания раствора и ускоряющими набор его прочности. Зимой марку раствора для каменной кладки (без тепляков) и монтажа крупнопанельных стен обычно повышают на одну ступень против марки при летних работах (например, 75 вместо 50).

Морозостойкость раствора характеризуется числом циклов попеременного замораживания и оттаивания, которое выдерживают насыщенные водой стандартные образцы-кубики размером 7,07х7,07х7,07 см (допускается снижение прочности образцов не более 25% и потеря массы не свыше 5%).

Строительные растворы для каменной кладки наружных стен и наружной штукатурки имеют марки по морозостойкости: F10, F15, F25, F35 и F50, причем марка повышается для влажных условий эксплуатации. В таких условиях растворы удовлетворяют и более высоким требованиям по морозостойкости: F100, F150, F200 и F300. Морозостойкость растворов зависит от вида вяжущего вещества, водоцементного отношения, введенных добавок и условий твердения.  

Специальные растворы 

Декоративные растворы предназначены для отделочных слоев стеновых панелей и блоков, наружной и внутренней отделки зданий. Эти растворы изготовляют на белом, цветном и обычном портландцементах; для цветных штукатурок внутри зданий применяют также строительный гипс и известь. Заполнителем служит чистый кварцевый песок либо дробленые пески из белого известняка, мрамора и т.п. Для лицевого отделочного слоя панелей наружных стен (из легкого бетона) применяют раствор марки 50, для отделки железобетонных конструкций - 150 с морозостойкостью не ниже 35.

Гидроизоляционные растворы для гидроизоляционных слоев и штукатурок обычно изготовляют состава 1:2,5 или 1:3,5 (цемент: песок по массе), применяя портландцемент, расширяющиеся цементы, сульфатостойкий портландцемент.  

Инъекционные цементные растворы применяют для заполнения каналов в предварительно напряженных конструкциях и уплотнения бетона. Марка раствора должна быть не ниже 300, поэтому используют портландцемент марки 400-500.  

Тампонажные растворы предназначены для гидроизоляции скважин, шахтных стволов и туннелей путем закрытия водоносных грунтов, трещин и пустот в горных породах и заполнения закрепленного пространства. Вяжущим в этих растворах служит специальный тампонажный портландцемент, а в агрессивных водах сульфатостойкий портландцемент.  

Рентгенозащитный раствор приготовляют на баритовой песке (предельной крупностью 1,25 мм), применяя портландцемент или щлакопортландцемент. В него вводят добавки, содержащие легкие элементы: литий, бор и др. 

Унифицированные составы тяжелых цементных бетонов 

Тонкостенные густоармированные изделия и конструкции, малые архитектурные формы

Класс бетона

Удобоукладывае мость бетонной смеси

Марка цемент

Ц/В

Расход компонентов в кг на приготовление 1м3 бетона     

Пластифицирующая добавка

Цемент

Вода

Щебень

Песок

Класс эффек

тивности

Расход, % от массы цемента

 

B 7,5

Ж2

300

1,16

200

160

1270

792

2

0,2

П1

300

1,17

207

177

1189

818

2

0,2

ПЗ

300

1,18

240

203

1094

813

2

0,22

B 15

Ж2

300

1,83

295

161

1270

708

2

0,2

П1

300

1,84

330

179

1189

707

2

0,22

ПЗ

300

1,86

381

205

1092

687

2

0,25

Ж2

400

1,54

246

160

1270

753

2

0,2

П1

400

1,55

274

177

1189

760

2

0,22

ПЗ

400

1,56

317

203

1094

747

2

0,25

B 20

Ж2

300

2,27

372

164

1265

639

2

0,22

П1

300

2,28

410

180

1187

639

2

0,25

ПЗ

300

2,3

476

207

1090

603

2

0,27

Ж2

400

1,89

304

161

1270

700

2

0,2

П1

400

1,9

340

179

1188

700

2

0,22

ПЗ

400

1,92

394

205

1092

679

2

0,25

B 25

Ж2

400

2,24

367

164

1265

646

2

0,22

П1

400

2,25

405

180

1187

643

2

0,25

ПЗ

400

2,27

470

207

1090

606

2

0,28

Ж2

500

1,99

322

162

1267

685

2

0,22

П1

500

2

360

180

1187

681

2

0,25

ПЗ

500

2,02

416

206

1092

654

2

0,28

В ЗО

Ж2

400

2,59

435

168

1255

583

2

0,28

П1

400

2,6

481

185

1183

570

2

0,28

ПЗ

400

2,63

494

188

1100

630

1

0,6

Ж2

500

2,29

376

164

1259

639

2

0,25

П1

500

2,3

414

180

1180

643

2

0,25

ПЗ

500

2,33

436

187

1100

709

1

0,55

В 35

Ж2

400

2,94

509

175

1250

538

2

0,31

П1

400

2,96

524

177

1189

549

1

0,65

ПЗ

400

2,99

562

188

1100

572

1

0,75

Ж2

500

2,59

435

168

1254

583

2

0,27

П1

500

2,6

455

175

1192

611

1

0,6

ПЗ

500

2,63

492

197

1100

634

1

0,65

В 40

Ж2

400

3,29

533

162

1270

501

1

07

П1

400

3,31

596

180

1180

487

1

0,75

Ж2

500

2,89

462

160

1270

568

1

0,65

П1

500

2,91

515

177

1189

556

1

0,7

ПЗ

500

2,94

553

188

1100

579

1

0,75

В 45

Ж2

500

3,19

514

161

1270

520

1

0,7

П1

500

3,21

571

178

1189

503

1

0,75

ПЗ

500

3,24

593

183

1106

553

1

0,85

Ж2

600

2,86

458

160

1270

571

1

0,65

П1

600

2,88

510

177

1189

561

1

0,7

ПЗ

600

2,91

547

188

1100

585

1

0,75

B 50

Ж2

600

3,12

161

502

1270

531

1

0,7

П1

600

3,14

178

559

1189

516

1

0,75

ПЗ

600

3,17

183

580

1106

567

1

0,85

 

 

 

 

 

 

 

 

 

 

 Составы бетона общестроительного назначения 

Обыкновенные мало- и среднеармированные изделия и конструкци 

Класс

Удобо уклад ывае мость бетонной смеси

Марка цемента

Ц/В

Расход компонентов в кг на приготовление 1м3 бетона

Пластифицирующая добавка

 

Цемент

Вода

Щебень

Песок

Классэффе

ктивности

Расход, % от массы цемента

B 7,5

Ж2

300

1,14

200

158

1332

737

2

0,2

П1

300

1,15

200

174

1250

774

2

0,2

ПЗ

300

1,16

231

199

1156

774

2

0,22

B 15

Ж2

300

1,77

279

158

1322

669

2

0,2

П1

300

1,78

312

175

1250

675

2

0,22

ПЗ

300

1,79

360

201

1153

658

2

0,25

Ж2

400

1,49

235

158

1332

706

2

0,2

П1

400

1,5

261

174

1250

721

2

0,22

ПЗ

400

1,51

300

199

1156

714

2

0,25

В 20

Ж2

300

2,19

350

160

1328

603

2

0,22

П1

300

2,2

387

176

1245

613

2

0,25

ПЗ

300

2,22

451

203

1150

574

2

0,28

Ж2

400

1,83

289

158

1332

660

2

0,2

П1

400

1,84

322

175

1250

666

2

0,22

ПЗ

400

1,86

374

201

1153

646

2

0,25

B 25

Ж2

400

2,16

346

160

1328

612

2

0,22

П1

400

2,17

382

176

1245

618

2

0,25

ПЗ

400

2,19

445

203

1150

585

2

0,28

Ж2

500

1,93

305

158

1332

647

2

0,22

П1

500

1,94

340

175

1250

651

2

0,25

ПЗ

500

1,96

394

201

1153

631

2

0,28

B 30

Ж2

400

2,5

408

163

1321

556

2

0,27

П1

400

2,51

452

180

1238

555

2

0,27

ПЗ

400

2,53

466

184

1164

604

1

0,6

Ж2

500

2,22

357

161

1327

600

2

0,25

П1

500

2,23

390

175

1250

608

2

0,25

ПЗ

500

2,25

414

184

1164

646

1

0,55

В 35

Ж2

400

2,83

473

167

1315

495

2

0,31

П1

400

2,84

491

173

1252

524

1

0,6

ПЗ

400

2,87

531

185

1164

542

1

0,7

Ж2

500

2,51

412

164

1322

552

2

0,27

П1

500

2,52

431

171

1253

581

1

0,55

ПЗ

500

2,55

469

184

1164

601

1

0,6

В 40

Ж2

400

3,17

507

160

1328

468

1

0,7

П1

400

3,18

553

174

1250

471

1

0,75

ПЗ

400

3,21

587

183

1164

503

1

0,85

Ж2

500

2,79

438

157

1332

535

1

0,65

П1

500

2,8

482

172

1253

535

1

0,7

ПЗ

500

2,83

512

181

1168

567

1

0,75

В 45

Ж2

500

3,08

487

158

1332

491

1

0,7

П1

500

3,09

535

173

1250

489

1

0,75

ПЗ

500

3,12

568

182

1168

516

1

0,8

Ж2

600

2,76

433

157

1332

540

1

0,65

П1

600

2,77

476

172

1253

540

1

0,7

ПЗ

600

2,8

507

181

1168

571

1

0,75

B 50

Ж2

500

3,37

553

164

1320

429

1

0,75

П1

500

3,38

598

177

1244

430

1

0,8

Ж2

600

3,01

475

158

1332

501

1

0,7

П1

600

3,02

522

173

1253

498

1

0,75

П3

600

3,05

555

182

1168

527

1

0,8

B60

Ж2

600

3,51

586

167

1315

398

1

0,85