Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции по порошкам и композ. для общего курса.doc
Скачиваний:
45
Добавлен:
12.02.2016
Размер:
192 Кб
Скачать
  1. Антифрикционные материалы и изделия

Порошковые антифрикционные материалы предназначены для производства изделий с низкими потерями на трение; их определяющий признак - сравнительно низкий коэффициент трения (обычно < 0,3, в том числе при наличии смазки < 0,1). Их структура должна быть гетерогенной, мелкозернистой и отвечать правилу Шарпи, т.е. представлять собой сочетание твердых и более мягких компонентов, причем одним из них, самым мягким, в таких антифрикционных материалах являются поры - составляющая с нулевой твердостью; к тому же поры могут быть заполнены смазкой.

Именно метод порошковой металлургии наиболее эффективен для изготовления антифрикционных изделий различного химического состава с хорошей прирабатываемостью, высокой износостойкостью, низким и стабильным коэффициентом трения, хорошей сопротивляемостью схватыванию и другими полезными качествами. Наличие пор позволяет придавать антифрикционные свойства материалам, которые в литом состоянии ими не обладают (например, порошковое пористое железо или материалы на его основе успешно работают в различных узлах трения). Поры изменяют сам механизм прирабатываемости трущихся поверхностей. У порошковых материалов вследствие изменения и перераспределения объема пор происходит необратимая пластическая деформация в поверхностном и прилегающем к нему значительном по глубине (до нескольких миллиметров) приповерхностном слое, тогда как у литых материалов хорошая прирабатываемость обеспечивается только в поверхностном слое толщиной всего в несколько микрометров вследствие уменьшения шероховатости, в том числе и путем его износа.

Хорошая прирабатываемость порошкового пористого материала повышает качество поверхности, улучшая антифрикционные и эксплуатационные свойства изделий из него.

Говоря о порошковых антифрикционных материалах и изделиях, обычно имеют в виду пористые подшипники, многослойные, металлопластмассовые и металлостеклянные антифрикционные материалы. Они находят широкое применение в тракторо- и сельхозмашиностроении, автомобильной промышленности, тяжелом, энергетическом и транспортном машиностроении, в текстильной и пищевой промышленностях, в авиационной и бытовой технике, приборостроении и др.

Спеченные антифрикционные материалы классифицируются:

по составу:

  • на основе Fe, Cu, Ni, Al, Co и т.д.;

  • металлические двухслойный материал на стальной подложке;

  • материал на основе пористых металлических каркасов, пропитанных фторопластом (металлопластмассовые материалы);

  • металлостеклянные материалы.

по назначению:

  • при наличии жидкой смазки;

  • в условиях ограниченной смазки;

  • в режиме самосмазывания;

  • без смазки в воздушной среде;

  • при высоких температурах;

  • в воде и коррозионных средах.

7. Современные композиционные материалы

7.1 Классификация композиционных материалов

Композит, определяется как матрица из одного материала с распределенными в ней заданным образом волокнами или дисперсными частицами другого материала. Такое распределение называют армированием.

По характеру распределения армирующего материала композиты можно разделить на два основных класса:

- композиты с упорядоченным армированием;

- композиты с неупорядоченным армированием.

В первом случае разработчик материала заранее задаётся конфигурацией, т.е. геометрической структурой распределения арматуры в матрице. Во втором случае распределение арматуры носит случайный, хаотический характер.

Композиционные материалы обоих классов можно разделить ещё по типу материалов, используемых в качестве матриц, и армирующих материалов. И те и другие материалы могут быть:

а) полимерами;

б) керамикой;

с) металлами.

На первый взгляд кажется, что создание композиционных материалов достаточно сложно. Ведь изготовление волокон – тонких и тончайших нитей – технологически сложно, вследствие чего неизбежен большой брак при их производстве; обязательны специальные меры для получения упорядоченного распределения и т.д. Возникает вопрос, оправдана ли такая технология и если оправдана, то почему?

Обратим внимание на очень важный факт: когда требуется материал с высокими значениями прочности и жёсткости (эти понятия отражают разные свойства твёрдого тела: прочность характеризует сопротивление разрушению, а жёсткость определяет недеформируемость материала), теплостойкости и устойчивости к химическим воздействиям, используют элементы, расположенные в середине периодической системы, - углерод, алюминий, кремний, кислород, азот. Эти элементы образуют друг с другом соединения с прочными стабильными связями. Типичными представителями таких соединений являются керамические материалы: SiC, Si3N4, SiO2, Al2O3. Для них характерен уже известный недостаток – большая хрупкость. Если такой материал изготавливают из мелких частиц или тонких волокон, его прочность значительно повышается. Подтверждением этому может служить оконное стекло – материал очень непрочный, но стеклянная нить, состоящая из тонких волокон, имеет прочность на растяжение 3*109 Па. Для сравнения укажем, обычная сталь имеет прочность только 0,5*109 Па.

Высокая прочность мелких частиц связана с тем, что вероятность W появления в образце дефекта настолько большого, чтобы вызвать хрупкое разрушение, падает с уменьшением размера образца:

W~1/d.

Аналогичный эффект наблюдается и в повышении прочности металлов, и в упрочнении керамики, для чего применяется очень тонкий помол. Кроме того, при разрыве одного волокна дефект не распространяется на другие волокна и нить (жгут) в целом не разрушается, а в однородном материале трещина распространяется вплоть до разрушения всего образца.

Однако простой пучок волокон представляет собой небольшую ценность как конструкционный материал. Для использования максимально возможной прочности волокон их помещают в матрицу, которая играет адгезионную роль – соединяет волокна и к тому же придаёт материалу твёрдую форму.

Нагрузка от матрицы на армирующее волокно передаётся сдвиговыми силами, действующими на его поверхность, которая поэтому должна быть велика по сравнению с площадью сечения волокна, т.е. в одном измерении размер арматуры должен быть много больше, чем в других. Таким образом, волокна-нити – самая выгодная конфигурация арматуры композита для конструкционных применений.

Установлено, что критическое отношение длины волокна l к его диаметру d должно быть примерно

l/d > 100.

Понятно, армирование короткими волокнами и частицами другой формы хуже, чем армирование длинными непрерывными волокнами. При использовании длинных волокон возникает явление синергизма.

Синергетика – это наука, изучающая саморегуляцию в системах с внутренними обратными связями. В случае композита – это влияние волокна на матрицу и матрицы на волокно. При растяжении пучка волокон без матрицы разрыв волокна уменьшает их количество, и удельная нагрузка на оставшиеся волокна увеличивается. Если волокна находятся в упругой или пластичной матрице, то при разрыве волокна его части при растяжении вытаскиваются из матрицы. Упругая деформация матрицы, или её пластическое течение сдавливает разорванные части волокна, и оно ещё в какой-то мере продолжает действовать подобно коротким волокнам.

Таким образом, основная цель построения конструкционного композита, - сохранение прочности волокон в его матрице.