Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции по порошкам и композ. для общего курса.doc
Скачиваний:
45
Добавлен:
12.02.2016
Размер:
192 Кб
Скачать

7.3 Принципы выбора структуры композита и способа его изготовления

Внутренняя структура упорядоченного композита (геометрия армирования) может быть различной, и от этого существенно зависят его свойства.

Наиболее простая геометрия высокопрочного композита напоминает строение фанеры (в этом случае обычно используют полимерную матрицу). Волокна сматывают с бобин, подвергают поверхностной обработке, улучшающей адгезию, протягивают в ванну, где их покрывают полимерной смолой. В результате смола скрепляет волокна в плоский жгут – ленту. Готовые ленты собирают в слоистый листовой материал (аналог фанеры) или же наматывают в сложную форму. Собранный в листы или намотанный материал отверждают термообработкой.

Слои можно накладывать поочередно с разным направлением волокон и формировать в композите клетчатую структуру арматуры. Это придаёт материалу жёсткость.

Недостатком такого композита является отсутствие поперечного армирования в каждом отдельном слое и между слоями, поэтому материал может расслаиваться. Наиболее употребляемые виды плетения арматуры:

  • обычный двухосный тканый материал (имеет высокую прочность);

  • трёхмерная ортогональная система (состоит из пучков волокон, повышает ударную прочность (вязкость) материала).

Выбор конфигурации арматуры композита определяется следующими факторами:

  • зависимостью прочности композита от ориентации волокон;

  • гибкостью волокон;

  • экономическими затратами на изготовление арматуры.

Выбор материала матрицы и геометрической структуры композита диктует выбор способа его изготовления. Способы изготовления композитов с металлической матрицей ещё не устоялись. Трудности связаны с высокими температурами, при которых происходит пропитка волокон металлическим расплавом. При высоких температурах протекают химические реакции на поверхности волокон. Если химическая реакция затрагивает тонкий слой, то это даже упрочняет связь волокон с матрицей, но если слой утолщается, то продукты реакции могут сильно ослабить эту связь и, кроме того, волокно может разрушиться.

Сегодня разрабатывается ряд низкотемпературных способов изготовления композитов с металлической матрицей. Все они прямо или косвенно основаны на диффузионном связывании.

При прямом диффузионном связывании используют нанесение фольги или порошка металла на волокно и нагрев при температурах ниже температуры плавления металла. В ряде случаев более эффективно диффузионное связывание происходит при высоких давлениях.

Примером непрямого диффузионного связывания (хотя это определение и не точно) является способ лазерного воздействия на композит. Композиты с керамической матрицей не всегда можно изготавливать путём её расплавления. Поэтому иногда используют традиционное спекание, как и при изготовлении обычной керамики. Длинные волокна в этом случае пропитывают суспензией керамического порошка в жидкости – «пластификаторе». При спекании под давлением пластификатор выгорает, частицы керамики уплотняются. Это аналог горячего прессования.

Техника изготовления композитов с матрицей из стекла традиционна, поскольку стёкла легко размягчаются.

Сложные композиты изготавливают в несколько стадий. Углеродные волокна пропитывают фенолформальдегидной смолой, принадлежащей к термореактивному типу. Потом собранные волокна нагревают в атмосфере инертного газа. Происходит пиролиз смолы, и остаётся аморфный углерод. Его снова покрывают смолой и повторяют пиролиз. После многократного повторения операций получают прочный малопористый композит.

Перспективен и другой метод: осаждение углерода, полученного пиролизом газовой среды, состоящей из углеродосодержащих органических соединений. Помимо обычного термического пиролиза, возможно применение лазерного пиролиза.