Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Shpori_z_fiziki.docx
Скачиваний:
83
Добавлен:
12.02.2016
Размер:
1.61 Mб
Скачать

17)Закон Біо-Савара-Лапласа. Магнітне поле прямолінійного та колового струмів

В 1820 році французькі вчені Х.Біо та Ф.Савар експериментально дослідили магнітні поля струмів, що течуть по провідниках різних конфігурацій (прямолінійний, коловий, соленоїд тощо). Узагальнюючи їх експериментальні результати, Лаплас сформулював диференціальний закон, що дістав назву закону Біо-Савара-Лапласа:

(4.9)або в скалярній формі:(4.10)

Рис. 4.5

Цей закон визначає індукцію магнітного поля, створеного елементом струму в точці простору, що описується радіусом-вектором(проводиться від елемента струму до даної точки простору);α – кут між елементом струму та радіусом-вектором(рис. 4.5).

Напрямок визначається за правилом свердлика: якщо обертати свердлик так, щоб його вістря рухалось за напрямком струму, то ручка свердлика опише лінію магнітної індукції (рис. 4.5). Індукцію поля, створеного в даній точці простору всім провідником, знаходимо за принципом суперпозиції(4.11)

Рис. 4.6

Результат інтегрування виразу (4.11) залежить від форми провідника. Зокрема:

а) розрахуємо магнітне поле прямолінійного струму на відстані R від нього. Як видно з рис. 4.6,

, (1)

,

звідки

. (2)

Рис. 4.7

Після підстановки (1) і (2) в (4.10) одержимо

.

Проінтегрувавши останній вираз, отримаємо

;

;(4.12)

б) вираз для індукції та напруженості магнітного поля нескінченно довгого прямолінійного струму на відстані R від нього (рис. 4.7) одержимо після підстановки в (4.12) ;:

Рис. 4.8

, ; (4.13)

в) магнітне поле в центрі колового струму (рис. 4.8)

, . (4.14)

18)Циркуляція вектора напруженості магнітного поля. Вихровий характер магнітного поля. Поле довгого соленоїда

Циркуляцією вектора по замкненому контуру називається інтегралде- вектор елементу довжини контура, напрямлений вздовж обходу контура,– проекціяна дотичну до контура,α – кут між та(рис. 4.9).

Розглянемо найпростіший випадок – магнітне поле нескінченно довгого прямолінійного струму. Лініями напруженості цього поля є кола, центри яких лежать на осі провідника, а площини перпендикулярні до нього.

Рис. 4.9

Знайдемо циркуляцію вздовж кола радіусомR:

, (4.15)

бо .

В загальному випадку, коли провідник охоплений замкненою лінією довільної форми (рис. 4.10, а),

,

. (4.16)

Рис. 4.10

Якщо контур не охоплює провідник зі струмом (рис. 4.10, б), то в (4.16) адже радіальна пряма спочатку рухається в одному напрямку (ділянка 1-2,), а потім – в іншому (ділянка 2-1,). Отже,

. (4.17)

Якщо магнітне поле створюється кількома струмами , то за принципом суперпозиціїі, враховуючи (4.16), остаточно одержимо

Ця формула являє собою математичний вираз теореми про циркуляцію вектора напруженості магнітного поля: циркуляція вектора напруженості магнітного поля дорівнює алгебраїчній сумі сил струмів, охоплених даним контуром (позитивним вважається струм, що зв’язаний з напрямком обходу правилом свердлика; струм протилежного напрямку вважається негативним). Вираз (4.18) є математичною ознакою вихрового характеру магнітного поля.

Рис. 4.11

Використаємо теорему про циркуляцію для розрахунку магнітного поля довгого соленоїда – циліндричної котушки, на яку намотаноN витків дроту. Виберемо контур інтегрування у вигляді прямокутника ABCD, в якому сторона AD лежить всередині соленоїда і паралельна до його осі, а сторона ВС дуже віддалена від соленоїда (рис. 4.11).

Тоді згідно з (4.18)

. (4.19)

Магнітне поле соленоїда швидко зменшується при віддалені від нього, тому . Крім того,оскільки проекціяна сторониAB і CD дорівнює нулю.

Отже, в лівій частині (4.19) залишається один доданок

.

Проекція на паралельний йому відрізокDA дорівнює модулю цього вектора: , а(довжина сторониDA).

Таким чином,

і , (4.20)

де – кількість витків на одиниці довжини соленоїда (густина витків). Отже, напруженість магнітного поля всередині довгого соленоїда дорівнює добутку сили струму на густину витків, а індукція поля

. (4.21)

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]