- •Конспект лекций
- •Содержание
- •Тема 1 Показатели качества воды
- •1.3 Обработка гидразином или сульфитом натрия.
- •Тема 2. Водные режимы судовых паровых котлов
- •2.1 Фосфатно-щелочной режим
- •2.3 Фосфатно-нитратный воднохимический режим
- •Расчёт дозировок химических реагентов
- •Тема 3. Водные режимы предупреждающие образование накипи и коррозии
- •3.1 Фосфатныйрежим
- •Тема 4. Особенности коррозии металлобарабанных и утилизационных котлов
- •4.1 Общие сведения о коррозии
- •Кислородная коррозия
- •Щелочная коррозия.
- •Межкристаллитная коррозия (щелочная хрупкость)
- •Подшламовая коррозия
- •Пароводяная коррозия
- •Высокотемпературная коррозия
- •Низкотемпературная коррозия
- •Тема 5. Коррозия внутренних поверхностей главных и вспомогательных котлов
- •5.1 Коррозия вспомогательных котлов
- •Коррозия утилизационных котлов.
- •Тема 6. Технология обработки воды в опреснителях
- •6.1 Типы водоопреснительных установок
- •6.1 Обработка воды в опреснителях высокого давления, среднего давления и обработка воды в вакуумных опреснителях
- •6.2 Требования к дистилляту
- •Тема 7. Технология обработки воды в дизелях
- •7.1.Назначение и эксплуатация системы охлаждения.
- •7.2.Присадки для обеспечения и поддержания водных режимов двс: антикоррозионные масла, нитрит-боратные присадки, хроматные присадки.
- •Ингибитор коррозии для охлаждающей воды «Dieselguard nb».
- •Хроматные присадки
- •Требование к воде
- •7.3. Физическая сущность и причины кавитационных повреждений
- •Тема 8. Технология обработки льяльной и сточной воды
- •8.1 Показатели качества льяльной воды согласно марпол 73/78
- •8.2 Технология очистки льяльных вод
- •Коалесценция
- •Флотация
- •Напорная флотация
- •Адсорбция
- •8.2.2. Химический Электрохимическая очистка
- •Озонирование
- •8.2.3. Биологический
- •8.3 Судовые установки очистки нефтесодержащих вод.
- •Сепаратор нефтесодержащих вод «пп матик».
- •Сепаратор нефтесодержащих вод «Гидропур» (Франция).
- •Сепаратор нефтесодержащих вод «Петролиминатор-630».
- •8.4 Методы и способы очистки сточных вод.
- •Тема 9 Топливо для судовых энергетических установок.
- •9.1 Получение топлива из нефти
- •9.2 Показатели качества топлива
- •9.3 Классификация топлива
- •Тема 10 Технология обработки топлива
- •10.1 Топливная система
- •10.2 Обработка и подача топлива к дизелям
- •Отстаивание топлива
- •Сепарирование топлива
- •10.3. Нетрадиционные способы обработки топлива
- •Тема 11 Приём топлива на судне
- •11.1 Основные правила бункеровки
- •11.2. Основы нормирования и организации контроля расхода топлива на судах
- •11.3 Методы разработки индивидуальных норм расхода топлива по элементам рейса
- •11.3.1. Экспериментальный метод
- •11.3.2. Расчётно-экспериментальный метод
- •11.3.3. Расчётный метод
- •11.3.4. Расчётно-статистический метод.
- •11.3.5. Индивидуальные технологические нормы расхода топлива на выпуск продукции
- •Тема 12. Моторные масла
- •12.1 Получение масел
- •12.2 Показатели качества масел.
- •12.3 Классификация моторных масел
- •Тема 13. Контроль качества моторных масел.
- •13.1 Браковочные показатели моторных масел.
- •13.2 Отбор проб моторных масел из циркуляционной системы смазки
- •Тема 14. Методы очистки масел
- •14.1 Загрязнение масел в процессе эксплуатации сэу
- •14.2 Фильтрация масел
- •14.3 Сепарация масла.
- •Тема 15. Марки масел судовых вспомогательных механизмов.
- •15.1. Рабочая жидкость для систем судовых гидроприводов.
- •15.2 Турбинные масла
- •15.2.1 Масла для паротурбинных установок.
- •15.2.2 Масла для газотурбинных установок
- •15.3 Трансмиссионные масла
- •15.4 Компрессорные масла.
- •15.5 Масла для компрессоров холодильных установок
- •15.6 Индустриальные масла
- •Тема 16. Контроль качества масла вспомогательных механизмов
- •16.1 Периодичность смены масла
- •16.2 Показатели предельного состояния масел вспомогательных механизмов
- •16.3 Судовые экспресс-лаборатории контроля качества гсм
- •Использованная и рекомендованная литература:
- •98309 Г. Керчь, Орджоникидзе, 82.
Тема 9 Топливо для судовых энергетических установок.
9.1 Получение топлива из нефти
В современных средне- и малооборотных двигателях (СОД и МОД) в основном применяются жидкие топлива, получаемые путём, переработки нефти. Сырая нефть является сложной смесью углерода. В нефть также входят в небольших количествах соединения серы, азота, кислорода и других элементов.
Процесс переработки состоит из атмосферной и вакуумной дистилляции, термического и каталитического крекингов.
Атмосферная дистилляция или процесс прямой перегонки нефти – первичная её переработка, заключающаяся в нагреве нефти в печи до температуры 320-330 0С, где она переходит в газообразное состояние.
Продукты испарения поступают в ректификационную (дистилляционную) колонку, где нефть разделяется при атмосферном давлении на фракции с различными пределами температуры кипения. Причём каждая фракция содержит присущие ей группы углеводородов, отличающихся как химической структурой, так и молекулярной массой. В верхней части ректификационной колонны температура держится на уровне 90 0С, по мере опускания температурный градиент увеличивается, соответственно растут и температурные пределы отбираемых фракций. В случае прямой перегонки нефти из ректификационной колонны при температуре 30-2000С отбирается газ, химическое сырье, бензин, при 120-2500С – горючее для реактивных двигателей, при 150-3150С – керосин, при 150-3600С – дизельные топлива, легкий и тяжелый газойли. Неиспарившаяся часть нефти собирается в нижней части колонны, образуя остаток, который либо используют для приготовления тяжёлых топлив, либо он поступает вакуумную установку для последующей переработки.
Дистилляция при вакууме позволяет понизить температурные пределы кипения фракции, что способствует дополнительному их выделению. В процессе вакуумной дистилляции в диапазоне температур 350-490 0С отбираются фракции, идущие на приготовление базовых компонентов смазочных масел. Отбираемая из вакуумной колонны фракция с наиболее низким пределом кипения представляет собой тяжёлый газойль, который может быть использован в качестве основного компонента при производстве тяжёлых топлив (мазутов) либо направляются на вторичную, более глубокую обработку, в установку каталитического или термического крекинга.
В крекинг-процессах углеводороды, содержащиеся в тяжелом газойле или остатке, под действием высоких давлений (до 10 МПа) и катализаторов – каталитический крекинг, либо высоких температур (450-700 0С) – термический крекинг – подвергаются химическим изменениям, сопровождающимся дроблением молекул с образованием мягких углеводородов. В результате выход светлых нефтепродуктов увеличивается. Об эффективности вторичных процессов свидетельствует то, что выход бензина увеличивается на 30 %, дизельного топлива – на 8 %, а количество остаточных нефтепродуктов, используемых для приготовления тяжёлых топлив снижается с 38 до 6 %.
В общем балансе тяжелых нефтяных топлив доля топлив, получаемых из остаточных продуктов вторичных процессов, непрерывно растёт.
При этом, в силу того, что остатки вторичных процессов есть результат трёхкратной обработки (атмосферной, вакуумной и крекинга) а также, благодаря чрезвычайно жёстким условиям протекания процессов крекинга и вибреакинга, их остаточный продукт приобретает вязкость около 700 мм2/с, и в нем сосредотачиваются тяжёлые углеводороды, склонные к полимеризации и образованию асфальтосмолистых соединений, а также значительные количества серы и ванадия.

Рис. 9.1 – Комплексная атмосферно-вакуумная установка переработки нефти.
