
11_-_chislennye_metody
.pdf
Используем средство «Поиск решения»:
Индивидуальные задания
2.3.1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sin(x |
+ |
1) |
− |
y |
= |
1,2; |
tg(xy |
+ |
0,4) |
= |
x 2 |
; |
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
1) |
|
|
|
|
|
|
|
|
|
2) |
|
|
+ 2 y 2 |
=1, |
x > 0, y > 0. |
|||
2x + cos y = 2. |
|
|
0,6x 2 |
|||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2.3.2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
− |
1) |
+ |
y |
= |
0,5; |
|
|
|
+ y) −1,6x = 0; |
|||||||
cos(x |
|
|
|
|
|
sin(x |
||||||||||||
1) |
− cos y = 3. |
|
|
|
2) |
2 |
+ y |
2 |
=1, |
x > 0, y > 0. |
||||||||
x |
|
|
|
x |
|
|
||||||||||||
2.3.3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sin x + 2 y = 2; |
|
1) |
|
|
|
cos(y −1) + x = 0,7. |
|
2.3.4 |
|
|
|
cos x + y =1,5; |
|
1) |
|
=1. |
|
2x − sin( y − 0,5) |
2.3.5
sin(x + 0.5) − y =1; |
|
1) |
+ x = 0. |
cos(y − 2) |
2.3.6
cos(x + 0,5) + y = 0,8;
1) − =sin y 2x 1,6.
2.3.7
sin(x −1) =1,3 − y;
1) x −sin( y +1) = 0,8.
tg(xy + 0,1) = x 2 |
; |
||
|
|
|
|
2) |
+ 2 y 2 |
=1. |
|
x 2 |
|
||
|
|
|
|
sin(x + y) −1,2x = 0,2;
2) 2 + 2 =x y 1.
tg(xy + 0,3) = x2 |
; |
||
|
|
|
|
2) |
+ 2 y 2 |
=1. |
|
0,9x 2 |
|
||
|
|
|
|
sin(x + y) −1,3x = 0;
2) 2 + 2 =x y 1.
tg xy = x 2 ; |
|
|
|
|
|
|
|
2) |
+ 2 y |
|
=1. |
0,8x2 |
2 |
||
|
|
|
|
2.3.8
2 y − cos(x + 1) = 0;
1) x + sin y = −0,4.
2.3.9
cos(x + 0,5) − y = 2;
1) − =sin y 2x 1.
2.3.10
sin(x + 2) − y = 1,5;
1) x + cos(y − 2) = 0,5.
2.3.11
|
sin( y + 1) − x = 1,2; |
1) |
|
|
|
|
2 y + cos x = 2. |
2.3.12 |
|
|
cos(y −1) + x = 0,5; |
1) |
|
|
y − cos x = 3. |
2.3.13
sin y + 2x = 2;
1) cos(x −1) + y = 0,7.
2.3.14
cos y + x = 1,5; |
|
1) |
= 1. |
2 y − sin(x − 0,5) |
2.3.15
sin( y + 0.5) − x = 1;
1) cos(x − 2) + y = 0.
sin(x + y) −1,5x = 0,1; |
||
2) |
+ y 2 |
= 1. |
x 2 |
tg xy = x 2 ;
2)
2 + 2 =0,7x 2 y 1.
sin(x + y) −1,2x = 0,1; |
||
2) |
+ y 2 |
= 1. |
x2 |
tg(xy + 0,2) = x 2 |
; |
||
|
|
|
|
2) |
+ 2 y 2 |
= 1. |
|
0,6x 2 |
|
||
|
|
|
|
sin(x + y) = 1,5x − 0,1; |
||
2) |
+ y 2 |
= 1. |
x 2 |
tg(xy + 0,4) = x 2 |
; |
||
|
|
|
|
2) |
+ 2 y 2 |
= 1. |
|
0,8x 2 |
|
||
|
|
|
|
sin(x + y) = 1,2x − 0,1; |
||
2) |
+ y 2 |
= 1. |
x2 |
tg(xy + 0,1) = x2 ;
2)
2 + 2 =0,9x 2 y 1.
2.3.16
cos(y + 0,5) + x = 0,8;
1) − =sin x 2 y 1,6.
2.3.17
sin( y −1) + x = 1,3;
1) y − sin(x + 1) = 0,8.
2.3.18
2x − cos( y + 1) = 0;
1) y + sin x = −0,4.
2.3.19
cos(y + 0,5) − x = 2;
1) − =sin x 2 y 1.
2.3.20
sin( y + 2) − x = 1,5;
1) y + cos(x − 2) = 0,5.
2.3.21
sin(x + 1) − y = 1;
1) + =2x cos y 2.
2.3.22
cos(x −1) + y = 0,8;
1) − =
x cos y 2.
sin(x + y) −1,4x = 0; |
||
2) |
+ y 2 |
= 1. |
x 2 |
tg (xy + 0,1) = x2 |
; |
||
|
|
|
|
2) |
+ 2 y 2 |
= 1. |
|
0,5x2 |
|
||
|
|
|
|
sin(x + y) = 1,1x − 0,1; |
||
2) |
+ y 2 |
= 1. |
x 2 |
tg (x − y) − xy = 0; |
||
2) |
+ 2 y 2 |
= 1. |
x 2 |
sin(x + y) − xy = −1; |
|||||
|
|
|
|
3 |
|
2) |
2 |
+ y2 |
= |
. |
|
x |
|
||||
|
4 |
||||
|
|
|
|
|
tg(xy + 0,2) = x 2 |
; |
||
|
|
|
|
2) |
+ 2 y 2 |
= 1. |
|
x 2 |
|
||
|
|
|
|
sin(x + y) − 1,5x = 0;
2) 2 + 2 =
x y 1.
2.3.23
sin x + 2 y = 1,6;
1) cos(y −1) + x = 1.
2.3.24
cos x + y = 1,2; |
|
1) |
= 2. |
|
|
2x − sin( y − 0,5) |
2.3.25
|
sin(x + 0.5) − y = 1,2; |
|
1) |
|
+ x = 0. |
|
|
|
|
cos(y − 2) |
|
2.3.26 |
|
|
|
cos(x + 0,5) + y = 1; |
|
1) |
|
= 2. |
|
|
|
|
sin y − 2x |
2.3.27
|
sin(x − 1) + y = 1,5; |
1) |
|
|
x − sin( y + 1) = 1. |
2.3.28 |
|
|
cos(y + 0,5) − x = 2; |
1) |
|
|
|
|
2 y + cos x = 2. |
2.3.29
cos(y − 0,5) + x = 0,8;
1) − =
y cos x 2.
2.3.30
cos(x −1) + y = 1;
1) + =sin y 2x 1,6.
tg xy = x 2 ;
2)
2 + 2 =0,5x 2 y 1.
sin(x + y) = 1,2x − 0,2; |
||
2) |
+ y 2 |
= 1. |
x 2 |
tg(xy + 0,1) = x2 |
; |
||
|
|
|
|
2) |
+ 2 y 2 |
= 1. |
|
0,7x 2 |
|
||
|
|
|
|
sin(x + y) −1,5x = 0,2; |
||
2) |
+ y 2 |
= 1. |
x 2 |
tg xy = x 2 ;
2)
2 + 2 =0,6x 2 y 1.
sin(x + y) −1,2x = 0; |
||
2) |
+ y 2 |
= 1. |
x 2 |
tg(xy + 0,3) = x2 |
; |
||
|
|
|
|
2) |
+ 2 y 2 |
= 1. |
|
0,5x 2 |
|
||
|
|
|
|
sin(x + y) −1,1x = 0,1;
2) 2 + 2 =
x y 1.