
- •Практическое занятие №2 Тема: Логика и доказательство. Доказательство: прямое, обратное, от противного. Метод математической индукции.
- •Теоретический материал Методы доказательств
- •3. Метод «от противного».
- •Математическая индукция
- •Методические указания
- •Контрольные вопросы
- •Индивидуальные задания
Практическое занятие №2 Тема: Логика и доказательство. Доказательство: прямое, обратное, от противного. Метод математической индукции.
Занятие рассчитано на 2академ. часа.
Цель: изучить различные методы доказательств (прямое рассуждение, метод «от противного» и обратное рассуждение), иллюстрирующие методологию рассуждений. Рассмотреть метод математической индукции.
Теоретический материал Методы доказательств
При доказательстве теорем применяется логическая аргументация. Доказательства в информатике неотъемлемая часть проверки корректности алгоритмов. Необходимость доказательства возникает, когда нам нужно установить истинность высказывания вида (АВ). Существует несколько стандартных типов доказательств, включающих следующие:
Прямое рассуждение (доказательство).
Предполагаем, что высказывание А истинно и показываем справедливость В. Такой способ доказательства исключает ситуацию, когда A истинно, a B ложно, поскольку именно в этом и только в этом случае импликация (АВ) принимает ложное значение (см. табл).
Таким образом, прямое доказательство идет от рассмотрения аргументов к доказательству тезиса, т. е. истинность тезиса непосредственно обосновывается аргументами. Схема этого доказательства такая: из данных аргументов (а, b, с, ...) необходимо следует доказываемый тезис q.
По этому типу проводятся доказательства в судебной практике, в науке, в полемике, в сочинениях школьников, при изложении материала учителем и т. д.
Примеры:
1. Учитель на уроке при прямом доказательстве тезиса “Народ творец истории”, показывает; во-первых, что народ является создателем материальных благ, во-вторых, обосновывает огромную роль народных масс в политике, разъясняет, как в современную эпоху народ ведет активную борьбу за мир и демократию, в-третьих, раскрывает его большую роль в создании духовной культуры.
2. На уроках химии прямое доказательство о горючести сахара может быть представлено в форме категорического силлогизма: Все углеводы - горючи. Сахар - углевод. Сахар горюч.
В современном журнале мод “Бурда” тезис “Зависть - корень всех зол” обосновывается с помощью прямого доказательства следующими аргументами: “Зависть не только отравляет людям повседневную жизнь, но может привести и к более серьезным последствиям, поэтому наряду с ревностью, злобой и ненавистью, несомненно, относится к самым плохим чертам характера. Подкравшись незаметно, зависть ранит больно и глубоко. Человек завидует благополучию других, мучается от сознания того, что кому-то больше повезло”'.
2. Обратное рассуждение (доказательство). Предполагаем, что высказывание В ложно и показываем ошибочность А. То есть, фактически, прямым способом проверяем истинность импликации ((не В)(не А)), что согласно таблицы, логически эквивалентно истинности исходного утверждения (АВ).
3. Метод «от противного».
Этот метод часто
используется в математике. Пусть а
- тезис или теорема, которую надо доказать.
Предполагаем от противного, что а
ложно, т. е. истинно не-а
(или
).
Из допущения
выводим
следствия, которые противоречат
действительности или ранее доказанным
теоремам. Имеем
,
при этом
-
ложно, значит, истинно его отрицание,
т.е.
,
которое по закону двузначной классической
логики (
→а)
дает а.
Значит, истинно а,
что и требовалось доказать.
Примеров доказательства “от противного” очень много в школьном курсе математики. Так, пример, доказывается теорема о том, что из точки, лежащей вне прямой, на эту прямую можно опустить лишь один перпендикуляр. Методом “от противного” доказывается и следующая теорема: “Если две прямые перпендикулярны к одной и той же плоскости, то они параллельны”. Доказательство этой теоремы пpямо начинается словами: “Предположим противное, т. е. что прямые АВ и CD не параллельны”.