Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ио теория.docx
Скачиваний:
8
Добавлен:
07.02.2016
Размер:
88.53 Кб
Скачать
  1. Визначення початкового рішення транспортної задачі.

Транспортна задача (задача Монжа — Канторовича) — задача про оптимальний план перевезення продукту (-тів) із пунктів відправлення до пунктів споживання. Розробка і використання оптимальних схем вантажних потоків дозволяють знизити витрати на перевезення. ТЗ по теорії складності обчислень є NP-складною або входить в клас складності NP. Коли сумарний обсяг пропозицій (вантажів, наявних в пунктах відправки) не дорівнює загальному обсягу попиту на товари (вантажі), які потрібні пунктам споживання, то транспортна задача називається незбалансованою.Специфічними для транспортної задачі є такі дві обставини:

  1. кожна із змінних входить в два рівняння системи (1)-(2),

  2. всі коефіцієнти при змінних приймають лише два значення 0 або 1.

Умови 1) і 2) дозволили розробити для вирішення транспортної задачі алгоритми, суттєво простіші, ніж симплексний метод, що є одним з основних методів вирішення задач лінійного програмування. Найвідомішими з цих алгоритмів є метод потенціалів і угорський метод.Метод потенціалів — це метод послідовного покращення плану (перевезень) з використанням другої теореми двоїстості для перевірки оптимальності.Угорський метод — це метод послідовної побудови допустимого плану, який автоматично виявляється оптимальним. В основі угорського алгоритму лежить метод чергування ланцюгів.

  1. Метод північно-західного кута.

Виконання починається з верхньої лівої клітини (Північно-західного кута) транспортної таблиці, тобто зі змінної

Крок 1. Змінній присвоюється максимальне значення, що допускається обмеженнями на попит і пропозицію.

Крок 2. Викреслюється рядок (або стовпець) з повністю реалізованою пропозицією (з задоволеним попитом). Це означає, що у викресленого рядку (стовпці) ми не будемо присвоювати значення іншим змінним (крім змінної, визначеної на першому етапі). Якщо одночасно задовольняються попит і пропозиція, викреслюється лише рядок або тільки стовпець.

Крок 3. Якщо не викреслено тільки один рядок або тільки один стовпець, процес зупиняється. В іншому випадку переходимо до клітини праворуч, якщо викреслять стовпець, або до клітини знизу, якщо викреслена рядок. Потім повертаємось до першого етапу.

Наприклад для попереднього прикладу початковий опорний план буде рівним:

Кількість

5

10

15

5

15

5

25

10

10

Кількість

5

15

15

15

В даній таблиці на перетині рядка і подано значення в початковому опорному плані (пустим клітинам відповідає значення нуль).