
- •1.0. Обоснование основных параметров и анализ технологических свойств лемешно-отвальной поверхности корпуса плуга
- •1.1. Способы образования лемешно-отвальной поверхности корпуса плуга
- •1.3. Обоснование параметров направляющей кривой
- •1.4. Углы γ образующих со стенкой борозды и законы их изменения
- •2. Рабочее сопротивление плугов и определение числовых характеристик тягового сопротивления рабочих органов почвообрабатывающих машин
- •2.1. Сила тяги плуга
- •2.2. Определение коэффициентов формулы в.П. Горячкина на основе опытных данных
- •3. Обеспечение устойчивости хода навесного плуга по глубине и ширине захвата
- •3.1. Силы, действующие на плуг
- •3.2. Равновесие навесного плуга в вертикально-продольной плоскости
- •Основные показатели плугов с изменяемой шириной захвата
- •3.3. Уравновешивание плуга в горизонтальной плоскости
- •4. Основные технологические показатели работы почвенной фрезы
- •4.1. Уравнение движения ножа фрезы
- •4.2. Скорость резания и абсолютная скорость движения рабочего органа
- •4.3. Гребнистость дна борозды
- •4.4. Длина пути резания
- •4.5. Угол установки рабочего агрегата
- •4.6. Мощность, необходимая для работы фрезы
- •5. Изучение свойств зубового поля бороны
- •5.1. Назначение и основные типы борон
- •5.2. Агротехнические требования к размещению зубьев бороны
- •5.3. Обоснование формы зубового поля бороны
- •5.4. Обоснование основных параметров зубового поля бороны
- •5.5. Основные выводы
- •5.6. Компьютерная программа анализа зубового поля бороны
- •5.7. Контрольный пример работы по программе «Борона (Borona)»
- •Контрольные вопросы
- •6. Обоснование основных параметров дисковых рабочих органов почвообрабатывающих машин
- •6.1. Классификация и характеристика основных типов дисковых орудий
- •6.2. Обоснование параметров сферических дисков
- •6.3. Расстановка дисков в батарее
- •6.4. Тяговое сопротивление дисковых рабочих органов
- •6.5. Условия равновесия дисковых машин
- •6.6. Возможности компьютерной программы «Диски» при анализе работы сферических дисков
- •7. Обоснование основных параметров рабочих органов культиваторов
- •7.1. Обоснование формы лапы культиватора
- •7.2. Размещение лап на раме культиватора
- •8. Технологический процесс, осуществляемый центробежными дисковыми рабочими органами машин для внесения удобрений
- •8.1. Уравнение движения удобрений по лопасти диска
- •8.2. Определение дальности полета удобрений, рассеваемых центробежным диском
- •9. Технологический процесс, осуществляемый зерновой сеялкой
- •9.1. Истечение семян через отверстия питающих емкостей
- •9.2. Определение рабочего объема катушки, обеспечивающего заданную норму высева семян
- •9.3. Вынос семян катушечным высевающим аппаратом
- •9.4. Процессы бороздообразования и заделки семян в почву сошником
- •9.5. Устойчивость сошника
- •9.6. Динамическая модель сошника
- •9.7. Характеристика функций внешних возмущений, действующих на механическую систему в условиях нормального функционирования
- •9.8. Возможности компьютерной программы "Сеялка, (Sejlka)" при анализе работы посевных машин
- •1. Определение характеристик технологического процесса работы мотовила уборочных машин
- •1.2. Кинематика мотовила
- •1.3. Условие входа планки в хлебную массу и обоснование параметров мотовила
- •1.4. Совместная работа мотовила с режущим аппаратом
- •Определение величины пучка стеблей, захватываемых планкой
- •2. Анализ технологического процесса кошения растений
- •2.1. Обоснование скорости ножа при резании растений
- •2.2. Механизмы привода режущих аппаратов и их характеристика
- •2.2.1. Кривошипно-шатунный механизм
- •2.3. Диаграмма движения сегмента
- •2.4. Обоснование формы сегментов режущих аппаратов с возвратно-поступательным движением ножа
- •2.5. Анализ работы аппаратов для бесподпорного среза растений
- •2.6. Расчет мощности, необходимой для привода режущего аппарата
- •Литература
- •3. Анализ технологического процесса обмолота зерна
- •3.1. Физико-механические свойства колосовых культур
- •Пропускная способность молотильного аппарата
- •3.2. Динамическое уравнение барабана и его анализ
- •3.3. Скорость хлебной массы в подбарабанье
- •3.3. Модель процессов обмолота и сепарации зерна через решетку подбарабанья
- •4. Анализ технологического процесса выделения зерна на соломотрясе
- •4.1. Основные типы соломотрясов
- •4.2. Кинематические характеристики клавишного соломотряса
- •4.3. Основные уравнения соломотряса
- •4.3.1. Первое основное уравнение соломотряса
- •4.3.2. Второе основное уравнение соломотряса
- •4.4. Обоснование кинематического режима соломотряса
- •4.5. Уравнение сепарации зерна и определение потерь урожая при использовании соломотряса
- •Пример обоснования основных размеров соломотряса, для комбайна с пропускной способностью 5 кг/с.
- •5. Анализ технологических показателей и обоснование режимов работы грохота уборочных машин
- •5.1. Взаимодействие плоского решета с обрабатываемой средой при просеивании компонентов смеси
- •5.2. Уравнение движения рабочей поверхности грохота
- •5.3. Дифференциальные уравнения относительного перемещения вороха по поверхности решета
- •5.3.1. Дифференциальное уравнение относительного перемещения вороха для правого интервала
- •5.3.2. Дифференциальное уравнение относительного перемещения вороха для левого интервала
- •5.4. Анализ дифференциальных уравнений относительного перемещения материала по грохоту
- •5.4.1. Условия сдвигов вверх по решету
- •5.4.2. Условия сдвигов вниз по решету
- •5.4.3. Условия отрыва вороха от решета
- •5.5. Скорость относительного перемещения материала по поверхности грохота
- •5.6. Толщина слоя вороха на решете грохота
- •Литература
- •6. Вентиляторы, их теория и расчет
- •Влияние формы лопастей вентилятора на основные показатели его работы
- •Основные соотношения вентиляторов
- •Механическое подобие вентиляторов
- •Характеристики вентиляторов
- •Универсальные характеристики
- •Пример расчета основных параметров вентилятора методом подобия
- •7. Анализ технологического процесса сушки сельскохозяйственных материалов
- •7.1. Характеристика свежеубранного зерна
- •7.2. Зерно как объект сушки
- •7.2.1. Влажность зерна и формы связи влаги с семенами
- •7.2.2. Теплофизические свойства семян и зерновой массы
- •7.3. Основные свойства воздуха как агента сушки
- •7.3.1. Влажность воздуха
- •7.3.2. Теплофизические характеристики влажного воздуха (теплоносителя)
- •7.4. Взаимодействие воздуха и высушиваемого материала
- •7.4.1. Статика процесса сушки
- •7.4.2. Кинетика процесса сушки
- •7.4.3. Динамика процесса сушки
- •7.5. Определение основных технологических показателей процесса сушки
- •Литература
- •8. Составление схемы очистки семян сельскохозяйственных культур
- •8.1. Требования, предъявляемые к семенному и продовольственному зерну
- •8.2. Основные принципы и приемы очистки и сортирования зерна
- •8.3. Закономерности изменения физико-механических свойств семян
- •8.4. Составление схемы очистки семян
- •8.5. Определение вероятностных характеристик очистки семян
- •9. Анализ технологических свойств цилиндрического триера
- •9.1. Форма ячеек триера
- •9.2. Движение зерна внутри ячеистого цилиндра
- •9.2.1. Определение границ зоны выпадения семян из ячеек
- •9.2.2. Движение частиц после отрыва от ячеистой поверхности
- •9.2.3. Зависимость формы траекторий от показателя кинематического режима работы триера
- •9.3. Обоснование основных размеров триера
- •Пример обоснования размеров цилиндрического триера
5.3.2. Дифференциальное уравнение относительного перемещения вороха для левого интервала
В этом интервале сила инерции U направлена слева направо, так как ускорение отрицательно, а материал стремится быть сдвинутым вниз по решету (рис. 4).
|
Рис. 4. Схема сил, действующих на материал в левом интервале |
Естественно, что сила трения будет направлена в сторону противоположную движению вороха.
Дифференциальное уравнение относительного перемещения материала по поверхности грохота примет вид
,
где
,
.
После подстановки U и F в исходное уравнение можно получить
после приведения к общему знаменателю
после приведения подобных членов
,
,
или окончательно:
, (4)
где
.
5.4. Анализ дифференциальных уравнений относительного перемещения материала по грохоту
Дифференциальные уравнения (3) и (4) можно представить как разность двух величин:
2r cos t ‑
‑ это не что иное, как ускорение самого грохота (1),
или
- это некоторые прямые линии, параллельные оси времени (рис. 5).
Таким образом, дифференциальные уравнения определяют избыточные ускорения, которые расходуются на перемещение материала.
|
Рис. 5. График относительного ускорения материала на грохоте |
5.4.1. Условия сдвигов вверх по решету
Сдвиги вверх могут появиться в правых интервалах, если правая часть уравнения (3) окажется положительной (больше нуля) хотя бы для максимального значения 2r cos t.
В этом случае
,
,
так как максимальное значение cos t = l.
Разделив правую и левую части неравенства на g, можно найти:
.
Но левая часть неравенства представляет собой показатель кинематического режима:
k = 2r/g. (5)
Правая часть уравнения, следовательно, тоже является показателем кинематического режима, но того его значения, при котором начнутся сдвиги вверх. Если эту величину обозначить k1 то условием наличия сдвигов вверх будет
. (6)
Если радиус кривошипа тем или иным способом определен, то смещения вверх будут возможны лишь при определенной частоте вращения кривошипа n1:
,
откуда
.
(7)
5.4.2. Условия сдвигов вниз по решету
Рассуждая аналогичным предыдущему случаю образом, можно получить из уравнения (4):
,
.
(8)
Сдвиги вниз начнутся при частоте вращения кривошипа n2:
.
(9)
Следует отметить, что k1 и k2 не всегда положительны, так как чаще всего < , что не допускает самопроизвольного движения материала по решету. В случае отрицательных k1 и k2 условие сдвигов может быть представлено так:
,
.
Чтобы не затруднять запись формул показателем абсолютной величины, в некоторых литературных источниках k2 определяют несколько иначе [1]:
.
(10)
Значения показателей кинематического режима k, k1 и k2 позволяют определить и направления преимущественных сдвигов.
Например, если k < k1 и k < k2, то ворох не будет перемешаться по решету, а сохранит свое положение относительного покоя.
В случае, когда k1 > k > k2) материал будет иметь сдвиги только вниз, а при k2 > k > k1 ‑ односторонние перемещения вверх.
Если k > k1 > k2, то частицы сдвигаются и вверх, и вниз, но вниз больше, чем вверх.
Когда k > k2 > k1, обрабатываемый материал начнет скользить по поверхности грохота и вверх, и вниз с преимущественным движением вверх.