Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Шпоры наши.doc
Скачиваний:
221
Добавлен:
10.12.2013
Размер:
11.03 Mб
Скачать

15. Реверсивные счетчики.

Реверсивный счетчик осуществляет счет сигналов, как в режиме сложения, так и в режиме вычитания. Режим работы изменяют с помощью схемы управления. К примеру пусть уравнения JK триггеров имеют вид: I) в режиме сложения;;

2) в режиме вычитания ;;.

Из этих выражений следует, что при изменении режима счета функции на управляющих J и K изменяются на инверсные только на входах второго и первого триггеров. Поэтому для реверсивного счета необходимо произвести коммутацию выходов нулевого и первого триггеров счетчиков. Рассмотрим общую схему:

16. Кольцевые счетчики.

На базе регистров сдвига можно построить кольцевые счетчики - счетчики Джонсона. Счетчик Джонсона имеет коэффициент пересчета, вдвое больший числа составляющих его триггеров. В частности, если счетчик состоит из трех триггеров (m=3), то он будет иметь шесть устойчивых состояний. Счетчик Джонсона используется в системах автоматики в качестве распределителей импульсов и т.д.

Таблица состояний счетчика Джонсона (рис. 3.29) содержит 2m (m - количество триггеров в составе регистра) строк и m-столбцов. Количество разрядов счетчика определяется количеством триггеров (рис. 3.29). Рассмотрим схему трехразрядного счетчика Джонсона, выполненного на базе D-триггеров (регистр сдвига реализован на D-триггерах). Для построения кольцевого счетчика достаточно соединить инверсный выход последнего триггера регистра (последнего разряда) с входом “D” (с входом, предназначенным для ввода последовательной информации) первого триггера.

Рис. 3.29. Таблица состояний а) и схема б) счетчика Джонсона на трехразрядном регистре сдвига

Предположим, что вначале все триггеры находятся в состоянии “0”, т.е. Q0= Q1=Q2=0. При этом на входе “D” первого триггера присутствует уровень “1”, т.к =1. Первым синхроимпульсом в триггер Т1 запишется “1”, вторым - единица запишется в первый триггер, из первого - во второй и т.д. до тех пор, пока на всех выходах регистра не будет “1”. После заполнения регистра единицами, на инверсном выходе триггера Т3 появится =0 и четвертым синхроимпульсом в Т1 запишется логический “0” (рис. 3.29, б).

После поступления последующих трех синхроимпульсов регистр обнуляется и на его вход “D” снова подается уровень “1”. Таким образом, цикл повторения состояния кольцевого счетчика состоит из шести тактов синхросигнала. Как видим, при работе в начале от первого триггера до последнего триггера распространяется “волна единиц”, а затем “волна нулей”. Код, в котором работает счетчик Джонсона, называют кодом Либау-Крейга.

 

17. Комбинационные устройства. Шифраторы.

Комбинационные устройства (КУ) характеризуются отсутствием памяти. Сигналы на их выходах в любой момент времени однозначно определяются сочетанием сигналов на входах и не зависят от предыдущих сигналов. Схемными признаками таких устройств является отсутствие цепей обратной связи с выхода на вход.

Шифратор - устройство, осуществляющее преобразование десятичных чисел в двоичную систему счисления. Пусть в шифраторе имеется m входов, последовательно пронумерованных десятичными числами (0, 1, 2, 3, ... ..., m - 1), и n выходов. Подача сигнала на один из входов приводит к появлению на выходах n-разрядного двоичного числа, соответствующего номеру возбужденного входа.

На рис. 22 приведено символическое изображение шифратора, преобразующего десятичные числа 0, 1, 2, ..., 9 в двоичную. Символ CD образован из букв, входящих в английское слово CODER. Слева показано 10 входов, обозначенных десятичными цифрами 0, 1, ..., 9. Справа показаны выходы шифратора: цифрами 1, 2, 4, 8 обозначены весовые коэффициенты двоичных разрядов, соответствующих отдельным выходам.

Из приведенной таблицы истинности (табл. 3) следует, что переменная х1 на выходной шине 1 имеет уровень лог. 1, если возбуждается один из нечетных входов. Следовательно: X1 = y1 + y3 + y5 + y7 + y9. Аналогично для остальных выходов: x2 = y2 + y3 + y6 +y7 , x4 = y4 + y5 + y6 + y7 , x8 = y8 + y9 .

Этой системе логических выражений соответствует схема на рис. 23, а. На рис. 23, б изображена схема шифратора на элементах ИЛИ-НЕ.

При выполнении шифратора на элементах И-НЕ предусмотрена подача на входы инверсных значений, т. е. для получения на выходе двоичного представления некоторой десятичной цифры необходимо на соответствующий вход подать лог. 0, а на остальные входы-лог.1. Схема шифратора, выполненная на элементах И-НЕ, приведена на рис. 23,в. Рис.23

Изложенным способом могут быть построены шифраторы, выполняющие преобразование десятичных чисел в двоичное представление с использованием любого двоичного кода.

Соседние файлы в предмете Электроника