
- •1.Загальна модель задачі лінійного програмування. Цільова функція задачі математичного програмування. Основні і неосновні обмеження. Оптимальні та допустимі розв’язки задачі лінійного програмування
- •3.Двоїста задача лінійного програмування, правила її побудови. Пошук розв’язку двоїстої задачі.
- •4.Транспортна задача лінійного програмування. Методи побудови опорних розв’язків транспортної задачі.
- •5.Основні теореми двоїстої та їх економічний зміст.
- •6.Базисний та опорний розв’язки задачі лінійного програмування. Штучний базис задачі лінійного програмування.
- •7.Задачі цілочисельного програмування та методи їх розв’язку.
- •8.Поняття задачі динамічного програмування. Принцип оптимальності Беллмана.
- •9. Метод найменших квадратів для побудови економетричних моделей.
- •12. Перевірка коефіцієнтів економетричної моделі на значущість, довірчі інтервали оцінок параметрів моделі.
- •13. Нелінійні економетричні моделі, лінеаризація нелінійних моделей.
- •14. Автокореляція залишків. Причини виникнення, наслідки, методи виявлення.
- •15. Методи виявлення та усунення автокореляції залишків.
- •16. Гетероскедатичність залишків, причини виникнення, наслідки, методи виявлення.
- •17. Методи виявлення та усунення гетероскедатичності.
- •18. Мультиколінеарність регресорів, причини виникнення, наслідки, методи виявлення та усунення.
- •19. Загальна схема побудови та дослідження економетричної моделі.
- •20. Економетричні моделі динаміки. Поняття стаціонарного часового ряду. Розклад часового ряду.
- •21. Тренд часового ряду та його виявлення
- •23. Визначення схильності до ризику. Детермінований еквівалент ризику. Індивідуальна функція корисності.
- •24. Ігрові методи прийняття рішень в умовах невизначеності.
- •25. Матриця ризику. Критерії Вольра, Байєса, Гурвіца.
- •28. Поняття моделі та моделювання. Основні принципи побудови економіко-математичної моделі.
- •29. Задачі нелінійного програмування, методи та особливості їх розв’язків.
- •30. Задачі лінійного програмування та методи їх розв’язку.
30. Задачі лінійного програмування та методи їх розв’язку.
Задача лінійного програмування — задача оптимізації з лінійною цільовою функцією та допустимою множиною обмеженою лінійними рівностями або нерівностями.
Тобто,
необхідно мінімізувати
при обмеженнях
,
,
,
де cj (j = 1, …, n), aij(i = 1, …, m) — задані числа.
Задача
максимізації функції
зводиться до задачі мінімізації шляхом
заміни знаків всіх коефіцієнтів cj на
протилежні.
Методи розв'язання
Метод потенціалів — розроблений в 1940 радянськими вченими Канторовичем та Гавуріним Л. В. в застосуванні до транспортної задачі;
Симплекс-метод — цей метод є узагальненням методу потенціалів для випадку загальної задачі лінійного програмування. Розроблений американським вченим Данциґом Дж.-Б. в 1949 році.
Двоїстий симплекс-метод розроблений згодом після прямого симплекс-методу, і який є, за сутністю, симплекс-методом розв'язання двоїстої задачі лінійного програмування, але сформульованої в термінах вихідної задачі.
Усі ці методи скінченні. Крім того, існують, також, ітеративні методи розв'язання, які дають можливість обчислювати розв'язки задачі із наперед заданою точністю. Близький зв'язок між лінійним програмуванням та теорією ігор дає змогу використовувати для розв'язання задач лінійного програмування чисельні методи теорії ігор.
Інша група ітеративних методів характеризується заміною вихідної задачі на еквівалентну їй задачу опуклої оптимізації без обмежень, для розв'язання якої використовуються різноманітні градієнтні методи. Для розв'язання задач лінійного програмування з великою кількістю змінних та обмежень використовують методи декомпозиції, які дають змогу замість вихідної задачі розв'язувати послідовність задач меншого обсягу. Методів лінійного програмування недостатньо при накладанні додаткових обмежень на цілочисельність значень змінних. Вивченням таких задач займається цілочисельне програмування.
Поряд з основною задачею лінійного програмування, розглядають різноманітні окремі задачі лінійного програмування, такі як транспортні, задачі розподілу, задачі теорії розкладів, вибору тощо.