- •Нейрокомпьютерная техника: Теория и практика
- •Предисловие
- •Благодарности
- •Введение
- •Почему именно искусственные нейронные сети?
- •Свойства искусственных нейронных сетей
- •Обучение
- •Обобщение
- •Абстрагирование
- •Применимость
- •Исторический аспект
- •Искусственные нейронные сети сегодня
- •Перспективы на будущее
- •Искусственные нейронные сети и экспертные системы
- •Соображения надежности
- •Литература
- •Глава 1. Основы искусственных нейронных сетей
- •Биологический прототип
- •Искусственный нейрон
- •Активационные функции
- •Однослойные искусственные нейронные сети
- •Многослойные искусственные нейронные сети
- •Нелинейная активационная функция
- •Сети с обратными связями
- •Терминология, обозначения и схематическое изображение искусственных нейронных сетей
- •Терминология
- •Дифференциальные уравнения или разностные уравнения
- •Графическое представление
- •Обучение искусственных нейронных сетей
- •Цель обучения
- •Обучение с учителем
- •Обучение без учителя
- •Алгоритмы обучения
- •Литература
- •Глава 2. Персептроны персептроны и зарождение искусственных нейронных сетей
- •Персептронная представляемость
- •Проблема функции исключающее или
- •Линейная разделимость
- •Преодоление ограничения линейной разделимости
- •Эффективность запоминания
- •Обучение персептрона
- •Алгоритм обучения персептрона
- •Дельта-правило
- •Трудности с алгоритмом обучения персептрона
- •Литература
- •Глава 3. Процедура обратного распространения
- •Введение в процедуру обратного распространения
- •Обучающий алгоритм обратного распространения
- •Сетевые конфигурации
- •Многослойная сеть.
- •Обзор обучения
- •Дальнейшие алгоритмические разработки
- •Применения
- •Предостережение
- •Паралич сети
- •Локальные минимумы
- •Размер шага
- •Временная неустойчивость
- •Литература
- •Глава 4. Сети встречного распространения
- •Введение в сети встречного распространения
- •Структура сети
- •Нормальное функционирование
- •Слои Кохоненна
- •Слой Гроссберга
- •Обучение слоя кохонена
- •Предварительная обработка входных векторов
- •Выбор начальных значений весовых векторов
- •Режим интерполяции
- •Статистические свойства обученной сети
- •Обучение слоя гроссберга
- •Сеть встречного распространения полностью
- •Приложение: сжатие данных
- •Обсуждение
- •Литература
- •Глава 5. Стохастические методы
- •Использование обучения
- •Больцмановское обучение
- •Обучение Коши
- •Метод искусственной теплоемкости
- •Приложения к общим нелинейным задачам оптимизации
- •Обратное распространение и обучение коши
- •Трудности, связанные с обратным распространением
- •Трудности с алгоритмом обучения Коши
- •Комбинирование обратного распространения с обучением Коши
- •Обсуждение
- •Литература
- •Глава 6. Сети Хопфилда
- •Конфигурации сетей с обратными связями
- •Бинарные системы
- •Устойчивость
- •Ассоциативная память
- •Непрерывные системы
- •Сети Хопфилда и машина Больцмана
- •Термодинамические системы
- •Статистичекие сети Хопфилда
- •Обобщенные сети
- •Приложения
- •Аналого-цифровой преобразователь
- •Задача коммивояжера
- •Обсуждение
- •Локальные минимумы
- •Скорость
- •Функция энергии
- •Емкость сети
- •Литература
- •Глава 7. Двунаправленная ассоциативная память
- •Структура дап
- •Восстановление запомненных ассоциаций
- •Кодирование ассоциаций
- •Емкость памяти
- •Непрерывная дап
- •Адаптивная дап
- •Конкурирующая дап
- •Заключение
- •Литература
- •Глава 8. Адаптивная резонансная теория
- •Архитектура apt
- •Описание apt
- •Упрощенная архитектура apt
- •Функционирование сети apTв процессе классификации
- •Реализация apt
- •Функционирование сетей apt
- •Пример обучения сети apt
- •Характеристики apt
- •Инициализация весовых векторов т
- •Настройка весовых векторов Вj
- •Инициализация весов bij
- •Теоремы apt
- •Заключение
- •Литература
- •Глава 9. Оптические нейронные сети
- •Векторно-матричные умножители
- •Электронно-оптические матричные умножители
- •Сети Хопфилда на базе электронно-оптических матричных умножителей
- •Голографические корреляторы
- •Объемные голограммы
- •Оптическая сеть Хопфилда, использующая объемные голограммы
- •Заключение
- •Литература
- •Глава 10. Когнитрон и неокогнитрон
- •Когнитрон
- •Структура
- •Обучение
- •Неокогнитрон
- •Структура
- •Обобщение
- •Вычисления
- •Обучение
- •Заключение
- •Литература
- •Приложение а. Биологические нейронные сети
- •Человеческий мозг: биологическая модель для искусственных нейронных сетей
- •Организация человеческого мозга
- •Мембрана клетки
- •Компьютеры и человеческий мозг
- •Приложение б. Алгоритмы обучения
- •Обучение с учителем и без учителя
- •Метод обучения хэбба
- •Алгоритм обучения Хэбба
- •Метод сигнального обучения Хэбба
- •Метод дифференциального обучения Хэбба
- •Входные и выходные звезды
- •Обучение входной звезды
- •Обучение выходной звезды
- •Обучение персептрона
- •Метод обучения уидроу-хоффа
- •Методы статистического обучения
- •Самоорганизация
- •Литература
Обучение выходной звезды
В то время как входная звезда возбуждается всякий раз при появлении определенного входного вектора, выходная звезда имеет дополнительную функцию; она вырабатывает требуемый возбуждающий сигнал для других нейронов всякий раз, когда возбуждается.
Для того чтобы обучить нейрон выходной звезды, его веса настраиваются в соответствии с требуемым целевым вектором. Алгоритм обучения может быть представлен символически следующим образом:
wi(t+1) =wi(t) +[yi–wi(t)],
где представляет собой нормирующий коэффициент обучения, который в начале приблизительно равен единице и постепенно уменьшается до нуля в процессе обучения.
Как и в случае входной звезды, веса выходной звезды, постепенно настраиваются над множеством векторов, представляющих собой обычные вариации идеального вектора. В этом случае выходной сигнал нейронов представляет собой статистическую характеристику обучающего набора и может в действительности сходиться в процессе обучения к идеальному вектору при предъявлении только искаженных версий вектора.
Обучение персептрона
В 1957 г. Розенблатт [4] разработал модель, которая вызвала большой интерес у исследователей. Несмотря на некоторые ограничения ее исходной формы, она стала основой для многих современных, наиболее сложных алгоритмов обучения с учителем. Персептрон является настолько важным, что вся гл. 2 посвящена его описанию; однако это описание является кратким и приводится в формате, несколько отличном от используемого в [4].
Персептрон является двухуровневой, нерекуррентной сетью, вид которой показан на рис. Б.3. Она использует алгоритм обучения с учителем; другими словами, обучающая выборка состоит из множества входных векторов, для каждого из которых указан свой требуемый вектор цели. Компоненты входного вектора представлены непрерывным диапазоном значений; компоненты вектора цели являются двоичными величинами (0 или 1). После обучения сеть получает на входе набор непрерывных входов и вырабатывает требуемый выход в виде вектора с бинарными компонентами.

Рис. Б.3. Однослоиная нейронная сеть
Обучение осуществляется следующим образом:
Рандомизируются все веса сети в малые величины.
На вход сети подается входной обучающий вектор Хи вычисляется сигнал NETот каждого нейрона, используя стандартное выражение
.
Вычисляется значение пороговой функции активации для сигнала NETот каждого нейрона следующим образом:
OUTj = 1,если NETjбольше чем порогθj,
OUTj =0 в противном случае.
Здесьθjпредставляет собой порог, соответствующий нейронуj(в простейшем случае, все нейроны имеют один и тот же порог).
Вычисляется ошибка для каждого нейрона посредством вычитания полученного выхода из требуемого выхода:
errorj= targetj– OUTj.
Каждый вес модифицируется следующим образом:
Wij(t+1) =wij(t) +xierrorj.
Повторяются шаги со второго по пятый до тех пор, пока ошибка не станет достаточно малой.
Метод обучения уидроу-хоффа
Как мы видели, персептрон ограничивается бинарными выходами. Уидроу вместе со студентом университета Хоффом расширили алгоритм обучения персептрона на случай непрерывных выходов, используя сигмоидальную функцию [5,6]. Кроме того, они разработали математическое доказательство того, что сеть при определенных условиях будет сходиться к любой функции, которую она может представить. Их первая модель – Адалин – имеет один выходной нейрон, более поздняя модель – Мадалин – расширяет ее на случай с многими выходными нейронами.
Выражения, описывающие процесс обучения Адалина, очень схожи с персептронными. Существенные отличия имеются в четвертом шаге, где используются непрерывные сигналы NETвместо бинарных OUT.Модифицированный шаг 4 в этом случае реализуется следующим образом:
4. Вычисляется ошибка для каждого нейрона посредством вычитания полученного выхода из требуемого выхода:
errorj= targetj– NETj.
