
- •Нейрокомпьютерная техника: Теория и практика
- •Предисловие
- •Благодарности
- •Введение
- •Почему именно искусственные нейронные сети?
- •Свойства искусственных нейронных сетей
- •Обучение
- •Обобщение
- •Абстрагирование
- •Применимость
- •Исторический аспект
- •Искусственные нейронные сети сегодня
- •Перспективы на будущее
- •Искусственные нейронные сети и экспертные системы
- •Соображения надежности
- •Литература
- •Глава 1. Основы искусственных нейронных сетей
- •Биологический прототип
- •Искусственный нейрон
- •Активационные функции
- •Однослойные искусственные нейронные сети
- •Многослойные искусственные нейронные сети
- •Нелинейная активационная функция
- •Сети с обратными связями
- •Терминология, обозначения и схематическое изображение искусственных нейронных сетей
- •Терминология
- •Дифференциальные уравнения или разностные уравнения
- •Графическое представление
- •Обучение искусственных нейронных сетей
- •Цель обучения
- •Обучение с учителем
- •Обучение без учителя
- •Алгоритмы обучения
- •Литература
- •Глава 2. Персептроны персептроны и зарождение искусственных нейронных сетей
- •Персептронная представляемость
- •Проблема функции исключающее или
- •Линейная разделимость
- •Преодоление ограничения линейной разделимости
- •Эффективность запоминания
- •Обучение персептрона
- •Алгоритм обучения персептрона
- •Дельта-правило
- •Трудности с алгоритмом обучения персептрона
- •Литература
- •Глава 3. Процедура обратного распространения
- •Введение в процедуру обратного распространения
- •Обучающий алгоритм обратного распространения
- •Сетевые конфигурации
- •Многослойная сеть.
- •Обзор обучения
- •Дальнейшие алгоритмические разработки
- •Применения
- •Предостережение
- •Паралич сети
- •Локальные минимумы
- •Размер шага
- •Временная неустойчивость
- •Литература
- •Глава 4. Сети встречного распространения
- •Введение в сети встречного распространения
- •Структура сети
- •Нормальное функционирование
- •Слои Кохоненна
- •Слой Гроссберга
- •Обучение слоя кохонена
- •Предварительная обработка входных векторов
- •Выбор начальных значений весовых векторов
- •Режим интерполяции
- •Статистические свойства обученной сети
- •Обучение слоя гроссберга
- •Сеть встречного распространения полностью
- •Приложение: сжатие данных
- •Обсуждение
- •Литература
- •Глава 5. Стохастические методы
- •Использование обучения
- •Больцмановское обучение
- •Обучение Коши
- •Метод искусственной теплоемкости
- •Приложения к общим нелинейным задачам оптимизации
- •Обратное распространение и обучение коши
- •Трудности, связанные с обратным распространением
- •Трудности с алгоритмом обучения Коши
- •Комбинирование обратного распространения с обучением Коши
- •Обсуждение
- •Литература
- •Глава 6. Сети Хопфилда
- •Конфигурации сетей с обратными связями
- •Бинарные системы
- •Устойчивость
- •Ассоциативная память
- •Непрерывные системы
- •Сети Хопфилда и машина Больцмана
- •Термодинамические системы
- •Статистичекие сети Хопфилда
- •Обобщенные сети
- •Приложения
- •Аналого-цифровой преобразователь
- •Задача коммивояжера
- •Обсуждение
- •Локальные минимумы
- •Скорость
- •Функция энергии
- •Емкость сети
- •Литература
- •Глава 7. Двунаправленная ассоциативная память
- •Структура дап
- •Восстановление запомненных ассоциаций
- •Кодирование ассоциаций
- •Емкость памяти
- •Непрерывная дап
- •Адаптивная дап
- •Конкурирующая дап
- •Заключение
- •Литература
- •Глава 8. Адаптивная резонансная теория
- •Архитектура apt
- •Описание apt
- •Упрощенная архитектура apt
- •Функционирование сети apTв процессе классификации
- •Реализация apt
- •Функционирование сетей apt
- •Пример обучения сети apt
- •Характеристики apt
- •Инициализация весовых векторов т
- •Настройка весовых векторов Вj
- •Инициализация весов bij
- •Теоремы apt
- •Заключение
- •Литература
- •Глава 9. Оптические нейронные сети
- •Векторно-матричные умножители
- •Электронно-оптические матричные умножители
- •Сети Хопфилда на базе электронно-оптических матричных умножителей
- •Голографические корреляторы
- •Объемные голограммы
- •Оптическая сеть Хопфилда, использующая объемные голограммы
- •Заключение
- •Литература
- •Глава 10. Когнитрон и неокогнитрон
- •Когнитрон
- •Структура
- •Обучение
- •Неокогнитрон
- •Структура
- •Обобщение
- •Вычисления
- •Обучение
- •Заключение
- •Литература
- •Приложение а. Биологические нейронные сети
- •Человеческий мозг: биологическая модель для искусственных нейронных сетей
- •Организация человеческого мозга
- •Мембрана клетки
- •Компьютеры и человеческий мозг
- •Приложение б. Алгоритмы обучения
- •Обучение с учителем и без учителя
- •Метод обучения хэбба
- •Алгоритм обучения Хэбба
- •Метод сигнального обучения Хэбба
- •Метод дифференциального обучения Хэбба
- •Входные и выходные звезды
- •Обучение входной звезды
- •Обучение выходной звезды
- •Обучение персептрона
- •Метод обучения уидроу-хоффа
- •Методы статистического обучения
- •Самоорганизация
- •Литература
Больцмановское обучение
Этот стохастический метод непосредственно применим к обучению искусственных нейронных сетей:
Определить переменную Т,представляющую искусственную температуру. ПридатьТбольшое начальное значение.
Предъявить сети множество входов и вычислить выходы и целевую функцию.
Дать случайное изменение весу и пересчитать выход сети и изменение целевой функции в соответствии со сделанным изменением веса.
Если целевая функция уменьшилась (улучшилась), то сохранить изменение веса.
Если изменение веса приводит к увеличению целевой функции, то вероятность сохранения этого изменения вычисляется с помощью распределения Больцмана:
P(c) = exp(–c/kT) (5.2)
где Р(с) – вероятность изменениясв целевой функции; k– константа, аналогичная константе Больцмана, выбираемая в зависимости от задачи;Т– искусственная температура.
Выбирается случайное число rиз равномерного распределения от нуля до единицы. ЕслиР(с)больше, чемr, то изменение сохраняется, в противном случае величина веса возвращается к предыдущему значению.
Это позволяет системе делать случайный шаг в направлении, портящем целевую функцию, позволяя ей тем самым вырываться из локальных минимумов, где любой малый шаг увеличивает целевую функцию.
Для завершения больцмановского обучения повторяют шаги 3 и 4 длякаждогоиз весов сети, постепенно уменьшая температуруТ,пока не будет достигнуто допустимо низкое значение целевой функции. В этот момент предъявляется другой входной вектор и процесс обучения повторяется. Сеть обучается на всех векторах обучающего множества, с возможным повторением, пока целевая функция не станет допустимой для всех них.
Величина случайного изменения веса на шаге 3 может определяться различными способами. Например, подобно тепловой системе весовое изменение wможет выбираться в соответствии с гауссовским распределением:
P(w) = exp(–w2/T2) (5.2)
где P(w) – вероятность изменения веса на величинуw,Т– искусственная температура.
Такой выбор изменения веса приводит к системе, аналогичной [З].
Так как нужна величина изменения веса Δw, а не вероятность изменения веса, имеющего величинуw,то метод Монте-Карло может быть использован следующим образом:
Найти кумулятивную вероятность, соответствующую P(w).Это есть интеграл от P(w) впределах от 0 до w. Так как в данном случае P(w)не может быть проинтегрирована аналитически, она должна интегрироваться численно, а результат необходимо затабулировать.
Выбрать случайное число из равномерного распределения на интервале (0,1). Используя эту величину в качестве значения P(w},найти в таблице соответствующее значение для величины изменения веса.
Свойства машины Больцмана широко изучались. В работе [1] показано, что скорость уменьшения температуры должна быть обратно пропорциональна логарифму времени, чтобы была достигнута сходимость к глобальному минимуму. Скорость охлаждения в такой системе выражается следующим образом:
(5.4)
где T(t) – искусственная температура как функция времени;Т0 – начальная искусственная температура; t– искусственное время.
Этот разочаровывающий результат предсказывает очень медленную скорость охлаждения (и данные вычисления). Этот вывод подтвердился экспериментально. Машины Больцмана часто требуют для обучения очень большого ресурса времени.