
- •Дисперсные системы
- •По размеру частиц дисперсной фазы:
- •По агрегатному состоянию дисперсной фазы и дисперсионной среды:
- •По характеру взаимодействия дисперсной фазы с дисперсионной средой:
- •По структурно-механическим свойствам:
- •Лиофобные (гидрофобные) коллоидные растворы Получение коллоидных растворов
- •Строение коллоидных частиц
- •Свойства лиофобных коллоидных растворов
- •Устойчивость коллоидных растворов
- •Вопросы для самоконтроля
- •Решение типовых задач
- •Задачи для самостоятельного решения Вариант 1
- •Вариант 2
- •Вариант 3
- •Вариант 4
- •Вариант 5
- •Вариант 6
- •Вариант 7
- •Вариант 8
- •Вариант 9
- •Вариант 10
- •Вариант 11
- •Вариант 12
- •Вариант 13
- •Вариант 14
- •Вариант 15
- •Лиофильные (гидрофильные) коллоидные растворы Строение мицелл в лиофильных коллоидах
- •Свойства лиофильных коллоидных растворов
- •Особенности растворов биополимеров
- •Связнодисперсные системы
- •Вопросы для самоконтроля.
Связнодисперсные системы
Взаимодействие частиц дисперсной фазы в свободнодисперсной системе может в определенных условиях приводить к их агрегации с образованием сплошной пространственной сетки, в которую заключена дисперсионная среда. Возникающая связнодисперсная система получила название геля.
Гель - связнодисперсная система, содержащая сплошную пространственную сетку из частиц дисперсной фазы, в ячейках которой заключен растворитель.
Гель можно рассматривать как коллоидный раствор ВМС, который под воздействием внешних факторов потерял свою текучесть. Но гель может образоваться и в процессе ограниченного набухания. Для каждого полимера существует определенная точка гелеобразования, которая соответствует тому пороговому значению концентрации раствора, при превышении которой раствор переходит в гель. Для водного раствора агар-агара при комнатной температуре точка гелеобразования соответствует концентрации 1,2%, а для желатина - 0,5%.
Понижение температуры уменьшает подвижность макромолекул и способствует гелеобразованию. Наиболее легко гелеобразование протекает при рН, соответствующем изоэлектрической точке, когда макромолекула белка по всей длине содержит противоположно заряженные функциональные группы, склонные к образованию межмолекулярных связей. Способствует гелеобразованию также прибавление к раствору электролитов, чьи ионы, связывая воду, частично дегидратируют полимер.
Гелями в организме являются мозг, кожа, хрящи, глазное яблоко.
Для большинства гелей характерна эластичность. При резком механическом воздействии на гель происходит его разжижение, но этот процесс обратим, и в состоянии покоя образовавшийся раствор снова превращается в гель. Это явление называется тиксотропией. Тиксотропия наблюдается при сотрясении мозга и последующем восстановлении его структур.
При длительном стоянии геля происходит необратимый процесс его старения, который выражается в дальнейшем упорядочении структуры, сжатии геля и выделении из него растворителя. Этот процесс называется синерезисом. Старению геля способствуют низкая температура, высокая концентрация полимера, кислотность, соответствующая изоэлектрической точке, и длительный покой в системе. С процессом синерезиса, протекающем в живых тканях, связан процесс уплотнения мяса старых животных и утончение их костей.
Вопросы для самоконтроля.
1. Как меняется структура раствора ПАВ и ВМС при увеличении его концентрации? Истинные и коллоидные растворы ПАВ и ВМС. От чего зависит критическая концентрация мицеллообразования?
2. Сравните молекулярно-кинетические и оптические свойства, а также устойчивость лиофильных и лиофобных коллоидных растворов.
3. Что такое солюбилизация, как она используется?
4. Из каких стадий складывается процесс набухания полимера? К чему он приводит? Какие факторы влияют на процесс набухания ВМС?
5. Сравните вязкость и коллигативные свойства истинных растворов электролитов и лиофильных коллоидных растворов ВМС.
6. Как возникает гель? Какие факторы способствуют гелеобразованию?