Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Методичка по гормонам.doc
Скачиваний:
812
Добавлен:
06.12.2013
Размер:
1.07 Mб
Скачать

4. Механизм действия гормонов.

В соответствии с делением гормонов по растворимости на гидрофильные и липофильные различают два механизма передачи сигналов в клетки-мишени:

I. Мембранно-цитозольный, или косвенный.

II. Внутриклеточно-ядерный, или прямой.

I. Мембранно-цитозольный механизм характерен для гидрофильных гормонов и других сигнальных молекул, которые не проникают в клетки и влияют на метаболические процессы в них опосредованно.

В общем виде реализация таких сигналов может быть сведена к трем основным моментам:

1. Взаимодействие гормонов с рецепторами, структурированными в плазматические мембраны клеток-мишеней.

2. Конформационная перестройка специализированных белков – первичных посредников, передающих сигналы от рецепторов белкам-эффекторам.

Роль первичных посредников часто выполняют G-белки. Их так называют, потому что они связаны с гуаниновыми нуклеотидами (от англ.Guanine nucleotides).

3. Активация вторичных посредников (мессенджеров – от англ. messenger– вестник, курьер, рассыльный) – небольших молекул или ионов, диффузия которых в клетке к определенным субклеточным структурам обеспечивает стремительное распространение сигнала гормона и его реализацию каскадными механизмами.

Далее о рецепторах, посредниках, каскадных механизмах подробнее.

Белки-рецепторы относятся к гликопротеинами должна выполнять как минимум две функции:

1. Прием сигнала гормона. Это осуществляет гормонсвязывающий локус (домен).

2. Преобразование принятого сигнала и инициация специфических гормональных эффектов. Это реализует эффекторный локус (домен).

В молекулах белков-рецепторов, локализованных в плазматические мембраны клеток, выделяют три постоянных структурных компонента:

1. Экстрацеллюлярный, находящийся снаружи.

2. Трансмембранный, пронизывающий билипидный слой плазматической мембраны.

3. Интрацеллюлярный, расположенный в цитозоле.

Функции этих элементов у мембранных рецепторов в разных клетках-мишенях у одного и того же гормона могут быть разные. Так α1-, α2-, β1-, β2-адренорецепторы инициируют в клетках отличающиеся по сути эффекты.

Различают три типа мембранных рецепторов.

1. Рецепторы первого типа представляют из себя интегральные белки с ферментативной активностью. Сигнальные молекулы, связывающиеся с рецептором снаружи, являются аллостерическими модуляторами, изменяющими конформацию всего белка и его ферментативную активность. Последняя обеспечивает фосфорилирование остатка тирозина в белках (рис. 4.1).

Рецепторы инсулина являются тирозинкиназами. Они структурированы в плазматические мембраны клеток-мишеней. Период их полужизни составляет 7 – 12 часов. Они представляют из себя гликогенпротеины (Mr460 кДа), состоящие из четырех субъединиц, соединенных дисульфидными связями (рис. 4.1). Наружу экспонированы две α-субъединицы (Mrпо 135 кДа каждая), а две β-субъединицы (Mrпо 95 кДа каждая) пронизывают плазматическую мембрану. Первые выполняют функцию гормон связывающего локуса. Вторые своими участками, выступающими в цитозоль, играют роль тирозинкиназы. Присоединение гормона к рецептору сопровождается фосфорилированием тирозина в соответственных цитоплазматических доменах. При этом одна β-цепь может фосфорилировать другую β-цепь той же молекулы рецептора (аутофосфорилирование). Теперь тирозинкиназа способна фосфорилировать и другие белки-субстраты инсулинового рецептора (англ.InsulinReceptorSubstrates-IRS). В любом случае это активирует внутриклеточный сигнальный путь (Ras-путь) и реализацию информации, доставленной сюда инсулином (см. рис. 4.14).

Рис. 4.1. Схема активирования инсулином рецептора первого типа, являющегося тирозинкиназой. 1 – гормон связывающий локус в α-субъединицах; 2 – центр тирозинкиназной активности в β-субъединицах; 3 – субстрат инсулинового рецептора (IRS) неактивный; 4 – субстрат инсулинового рецептора (IRS) активный; 5 – активация внутриклеточного сигнального пути (Ras-пути).

2. Рецепторы второго типа являются олигомерными трансмембранными белками, образующими гормон активирующие ионные каналы. Связывание сигнальных молекул с рецепторами ведет к открыванию каналов для Na+,K+,Cl¯и др. Так «работают» нейромедиаторы, например ацетилхолин черезN-холинорецепторы, в которых формируютсяNa+-каналы (рис. 4.2), ГАМК (γ-аминомасляная кислота, γ-аминобутират) через А-рецепторы (Cl¯-каналы) и др.

Рис. 4.2. Схема рецептора третьего типа на примере N-ацетилхолина.

1 – участки связывания сигнальной молекулы.

2 – сформированный ионный (Na) канал.

3. Интегральные белки, относящиеся к рецепторам третьего типа, участвуют в реализации гормональных сигналов в сочетании с G-белками. Полипептидные цепи этих белков включают по семь трансмембранных тяжей и по три примембранных петли с каждой стороны (рис. 4.3).

Рис. 4.3. Строение гормональных рецепторов третьего типа, сопряженных с G-белками. 1 – олигосахарид; 2 – N-конец; 3 – трансмембранные петли; 4 – С-конец.

Связывание гормона с рецептором третьего типа изменяет конформацию трансмембранных тяжей и примембранных петель. Происходит резкое повышение сродства рецептора к G-белку. Возникает сигнал, передаваемый белками-эффекторами, которые являются либо ферментами (например, аденнилатциклаза, фосфолипаза С), либо ионными каналами. Функция белков-эффекторов заключается в изменении коцентрации вторичных посредников (мессенджеров).

G-белки как первичные посредники передают сигналы от рецепторов третьего типа к белкам-эффекторам (рис. 4.4 А). Они состоят из трех субъединиц: α, β, γ. α-субъединица может связывать гуаниновые нуклеотиды ( англ.Guaninenucleotide): ГТФ или ГДФ. Отсюда их названиеG-белки. Они образуют семейство, включающее около 20 их разных форм. Но различают два их типа:Gs– стимулирующие (от англ.stimulate) «работают» с рецепторами, передающими стимулирующие сигналы возбуждения (Rs),Gi– ингибирующие белки (от англ.inhibite– ингибировать) передают отRiсигналы торможения.

В неактивном G-протеине α, β, γ-субъединицы ассоциированы в единую молекулу и к α-субъединице присоединен ГДФ (рис. 4.5 А).

После взаимодействия гормона с рецептором ГДФ замещается на ГТФ (рис. 4.4.Б). Вслед за этим происходит диссоциация G-белка на две части: α-субъединицу в сочетании с ГТФ и комплекс β, γ-субъединиц. α-субъединица-ГТФ активирует белки-эффекторы.

α-субъединица-ГТФ активирует белки-эффекторы (например ферменты аденилатциклазу или фосфорилазу С), что в дальнейшем приводит к накоплению в клетках вторичных посредников (рис. 4.4 В).

α-субъединица проявляет слабую ГТФ-азную активность. Медленно гидролизуя ГТФ до ГДФ, она переводит саму себя в неактивное состояние и вновь ассоциирует с β, γ-комплексом и ГДФ. G-белок возвращается в исходное неактивное состояние. Передача гормонального сигнала прекращается (рис. 4.4 Г),Gs- иGi-белки, имея одинаковые β- и γ-субъединицы (Mr40 кДа обеих вместе), включают разные α-субъединицы. ВGs-белкеα-субъединица имеетMr45 кДа, вGi– 41 кДа.

Рис. 4.4. Цикл конформационных изменений G-белков в процессе передачи гормонального сигнала. 1 – гормон; 2 – рецептор первого типа; 3 – G-белок; 4 – белок-эффектор (например аденилатциклаза).

Вторичные посредники (мессенджеры) – это внутриклеточные вещества, концентрация которых строго контролируется внеклеточными сигналами, передаваемыми гормонами и другими сигнальными молекулами. Такие вещества образуются из доступных субстратов и имеют короткий период полураспада или являются ионами. Ими являются 3', 5' цАМФ, 3', 5' цГМФ.

1. 3', 5'-циклический аденозинмонофосфат (3', 5' цАМФ);

2. 3', 5'-циклический гуанозин монофосфат (3', 5' цГМФ);

3. Диацилглицерол (ДАГ);

4. Инозитол-1, 4, 5-трифосфат (ИФ3);

5. Инозитол-1,3, 4, 5-тетрафосфат (ИФ4);

6. Са2+.

Известно несколько путей передачи сигналов с их участием.

1. Аденилатциклазный.

2. Гуанилатциклазный.

3. Фосфоинозитидный.

4. Через «медленные» неэлектрогенные Са2+-каналы.

5. Тирозинкиназный.

6. Через «быстрые» электрогенные Na+- и другие ионные каналы.

I. Аденилатциклазный путь мембранно-цитозольного механизма. Это самый распространенный путь передачи гормональных сигналов. В его реализации и завершении участвуют, как минимум, шесть белков.

1. Белки-рецепторы третьего типа (рис. 4.3) взаимодействуют с сигнальными молекулами.

2. Gs- илиGi-белки играют роль первичных посредников (рис. 4.4).

3. Белок-эффектор аденилатциклаза (АЦ) катализирует реакцию образования из АТФ 3', 5' цАМФ – вторичного посредника (рис. 4.5).

Он выполняет роль аллостерического активатора протеинкиназы А (индекс «А» от англ. сАМР).

Аденилатциклаза (интегральный белок, имеющий 12 трансмембранных доменов) обнаружена во всех тканях и органах. Выявлено 8 ее изоформ, из которых 4 являются Са2+-активируемыми.

4. Протеинкиназа А принимает сигналы от аденилатциклазы. Фермент состоит из четырех субъединиц. Два регуляторных (R) и два католитических (С) протомера образуют структуруR2C2(рис. 4.7). Связываясь обратимо с регуляторными субъединицами, 3', 5' цАМФ вызывает диссоциацию комплекса (C2R2 → цАМФ4R2+C+C). Освобождающиеся отдельно друг от друга две каталитические субъединицы фактически и являются активной протеинкиназой. Она фосфорилирует различные белки, включая ферменты, и изменяет их активность (ковалентная модификация). См. рис. 4.6.

5. Фосфодиэстераза, катализирует дециклизацию 3', 5' цАМФ (рис. 4.6) с образованием просто АМФ. Ингибиторами ее являются ураты, ксантины, кофеин, теофиллин, теобромин.

6. Фосфопротеинфосфатаза, возвращающая белки, ранее фосфорилированные протеинкиназой «А», в нативное состояние (рис. 4.6). Ее активность повышается под действием инсулина.

Два последних фермента обрывают передачу сигналов по аденилатциклазному пути.

Рис. 4.5. Реакции, катализируемые аденилатциклазой и фосфодиэстеразой. 1 – ингибиторы фосфодиэстеразы (ураты, ксантины, кофеин, теофиллин, теобромин).

Рис. 4.6. Реакции, катализируемые протеинкиназой «А» с изменением активности белка и фосфопротеинфосфатазой, возвращающей белок в нативное состояние. 1 – инсулин, активирует фосфопротеинфосфатазу.

Гормоны, «работающие» по аденилатциклазному пути, могут передавать сигналы возбуждения и торможения (табл. 4.1).

Таблица 4.1.