
- •1 Эволюция вычислительных систем. Основные программные и аппаратные компоненты сети.
- •Появление глобальных сетей : соединении компьютеров, находящихся на большом расстоянии друг от друга. Терминалы соединялись с компьютерами через телефонные сети с помощью модемов.
- •2. Понятие “открытая система”. Многоуровневый подход. Протокол. Интерфейс. Стек протоколов.
- •Амплитудно-частотная характеристика показывает, как затухает амплитуда синусоиды на выходе линии связи по сравнению с амплитудой на ее входе для всех возможных частот передаваемого сигнала.
- •Аналоговая модуляция
- •Методы аналоговой модуляции
- •Цифровое кодирование
- •Требования к методам цифрового кодирования
- •Скрэмблирование
- •9. Методы коммутации. Коммутация каналов. Коммутация пакетов. Коммутация сообщений.
- •Возникновение коллизии - ситуация, когда две станции одновременно пытаются передать кадр данных по общей среде. Содержимое обоих кадров сталкивается на общем кабеле и происходит искажение информации.
- •Время двойного оборота и распознавание коллизий
- •12. Форматы кадров технологии Ethernet: кадр 802.3, кадр Ethernet II. Домен коллизий.
- •Кадр 802.3/llc
- •Домен коллизий
- •13. Сети Ethernet на коаксиальном кабеле (10Base-5, 10Base-2), на витой паре (10Base-t), на оптоволоконном кабеле (10Base-fl, 10Base-fb). Правила: 3-4-5 и 5 хабов. Стандарт 10Base-5
- •Стандарт 10Base-2
- •14. Технология Token Ring. Маркерный метод доступа к среде передачи данных. Отличие метода доступа для 16 Мбит/с.
- •Маркерный метод доступа к разделяемой среде
- •15. Типы и формат кадров Token Ring. Оборудование и спецификация физического уровня Token Ring.
- •Маркер Кадр маркера состоит из трех полей, каждое длиной в один байт.
- •Физический уровень технологии Token Ring
- •16 Технология Fast Ethernet. Отличия от Ethernet. Полнодуплексный режим работы. Автопереговоры.
- •17 Оборудование и спецификация физического уровня: 100Base-tx, 100Base-t4, 100Base-fx
- •18 Технология fddi. Обеспечение отказоустойчивости. Особенности метода доступа к среде передачи данных fddi. Одиночное и двойное присоединение к сети fddi.
- •19 Сетевое оборудование лвс. Сетевые адаптеры. Дополнительные функции сетевых адаптеров.
- •20 Ограничения сети построенной на общей разделяемой среде. Логическая структуризация сети. Преимущества логической структуризации.
- •Основные недостатки сети на одной разделяемой среде начинают проявляться при превышении некоторого порога количества узлов, подключенных к разделяемой среде
- •21 Мост лвс. Алгоритм работы прозрачного моста. Ограничение сети построенной на мостах и коммутаторах.
- •22 Коммутатор лвс. Структурная схема коммутатора и коммутационной матрицы. Коммутация "на лету" и с полной буферизацией.
- •23 Управление потоком кадров при полнодуплексном режиме работы. Управление потоком кадров при полудуплексном режиме работы.
- •24 Алгоритм построения покрывающего дерева. Характеристики, влияющие на производительность коммутаторов.
- •26 Протокол ip. Заголовок ip пакета. Фрагментация и восстановление.
- •27 Ip адресация. Классы ip адресов. Разбиение ip-сетей на подсети при помощи масок. Реальные и частные ip адреса.
- •28 Протокол arp. Кэш arp. Статические, динамические и Proxy записи arp. Функционирование Proxy-arp. Форматы сообщений arp. Revers arp.
- •29 Протокол icmp. Основные сообщения icmp. Формат icmp сообщений. Случаи когда не порождаются icmp сообщения. Протокол udp. Формат заголовка udp.
- •30 Протокол надежной доставки tcp-сообщений
- •33 Дистанционно-вектрный алгоритм построения таблиц маршрутизации. Проблема счета до бесконечности. Способы ускорения восстановления.
- •34 Протокол маршрутизации rip ip. Форматы сообщений rip ip V.1 и rip ip V.2. Преимущества rip ip V.2. Ограничения rip ip.
- •35 База данных состояния связей. Алгоритм spf построения таблиц маршрутизации. Тупиковые связи.
- •36 Протокол маршрутизации ospf. Определение метрики линии связи. Поддержка множественных маршрутов. Паразитный эффект множественных маршрутов.
- •37 Построение базы данных состояния связей. Протокол Hello. Протокол обмена. Протокол затопления. Типы сообщений ospf.
- •38 Типы сетей в терминах ospf. Уменьшение числа отношений смежности в широковещательной сети. Транзитная сеть (вершина). Выборы главного маршрутизатора. Группы рассылки ospf.
- •39 Разбиение автономной системы на области. Магистральная и периферийные области. Типы маршрутизаторов ospf: внуриобластной, abr, asbr. Распространение информации о внешнеобластных и внешних сетях.
- •40 Полностью изолированная область. Транзитная область. Виртуальная связь. Тупиковая область. Полностью тупиковая область. Типы и формат заголовка ospf сообщений.
- •41 Функционирование nat. Маскарадинг портов. Редакторы nat. Функционирование Proxy. Преимущества Proxy.
- •43 Служба dns. Иерархические доменные имена. Зоны. Полномочные серверы dns. Первичные и вторичные. Серверы кэширования и пересылок.
- •44 Порядок разрешения имен. Рекурсивные и итеративные запросы. Формат и типы записей ресурсов. Делегирование зон. Файлы зон. Файл корневых ссылок. Динамические обновления записей ресурсов.
- •45 Групповая рассылка ip пакетов. Преобразование группового адреса в mac адрес. Функционирование групповой рассылки на хосте и маршрутизаторе. Сеть mBone.
- •46 Протокол igmp. Типы сообщений igmp V.1 и V.2. Ограничители групповой рассылки. Работа интерфейса маршрутизатора в режиме igmp-Proxy.
13. Сети Ethernet на коаксиальном кабеле (10Base-5, 10Base-2), на витой паре (10Base-t), на оптоволоконном кабеле (10Base-fl, 10Base-fb). Правила: 3-4-5 и 5 хабов. Стандарт 10Base-5
10Base-5 - коаксиальный кабель диаметром 0,5 дюйма, называемый «толстым» коаксиалом. Имеет волновое сопротивление 50 Ом. Максимальная длина сегмента - 500 метров (без повторителей).
В качестве среды передачи данных коаксиальный кабель с волновым сопротивлением 50 Ом, диаметром центрального медного провода 2,17 мм и внешним диаметром около 10 мм («толстый» Ethernet).
Правило применения повторителей в сети Ethernet l0Base-5 носит название правило 5-4-З; 5 сегментов, 4 повторителя, 3 нагруженных сегмента. Ограниченное число повторителей объясняется дополнительными задержками распространения сигнала, которые они вносят. Применение повторителей увеличивает время двойного распространения сигнала, которое для надежного распознавания коллизий не должно превышать время передачи кадра минимальной длины, то есть кадра в 72 байт или 576 бит.
К достоинствам стандарта 10Base-5 относятся: хорошая защищенность кабеля от внешних воздействий, сравнительно большое расстояние между узлами, возможность простого перемещения рабочей станции в пределах длины кабеля AUI. Недостатками 10Base-5 являются: высокая стоимость кабеля, сложность его прокладки из-за большой жесткости, потребность в специальном инструменте для заделки кабеля, останов работы всей сети при повреждении кабеля или плохом соединении;
Стандарт 10Base-2
10Base-2 - коаксиальный кабель диаметром 0,25 дюйма, называемый «тонким» коаксиалом. Имеет волновое сопротивление 50 Ом. Максимальная длина сегмента - 185 метров (без повторителей). Стандарт 10Base-2 использует в качестве передающей среды коаксиальный кабель с диаметром центрального медного провода 0,89 мм и внешним диаметром около 5 мм («тонкий» Ethernet). Тонкий коаксиал обладает худшей помехозащищенностью, худшей механической прочностью и более узкой полосой пропускания.
Станции подключаются к кабелю с помощью высокочастотного BNC Т-коннектора, который представляет собой тройник, один отвод которого соединяется с сетевым адаптером, а два других - с двумя концами разрыва кабеля. Максимальное количество станций, подключаемых к одному сегменту, - 30. Минимальное расстояние между станциями -1м. Кабель «тонкого» коаксиала имеет разметку для подключения узлов с шагом в 1 м.
Стандарт l0Base-2 также предусматривает использование повторителей, применение которых также должно соответствовать «правилу 5-4-3». В этом случае сеть будет иметь максимальную длину в 5х185 = 925 м. Очевидно, что это ограничение является более сильным, чем общее ограничение в 2500 метров.
Общим недостатком стандартов 10Base-5 и 10Base-2 является отсутствие оперативной информации о состоянии моноканала. Повреждение кабеля обнаруживается сразу же (сеть перестает работать), но для поиска отказавшего отрезка кабеля необходим специальный прибор - кабельный тестер.
Стандарт 10Bаse-T: 10Base-T - кабель на основе неэкранированной витой пары (UTP). Образует звездообразную топологию на основе концентратора. Расстояние между концентратором и конечным узлом - не более 100 м.
Сети 10Base-T используют в качестве среды две неэкранированные витые пары (UTP). Многопарный кабель на основе неэкранированной витой пары категории 3 (категория определяет полосу пропускания кабеля, величину перекрестных наводок NEXT и некоторые другие параметры его качества). Конечные узлы соединяются по топологии «точка-точка» со специальным устройством - концентраторами помощью двух витых пар. Одна витая пара требуется для передачи данных от станции к повторителю (выход Тх), а другая - от повторителя к станции (вход Rх).
Hub осуществляет функции повторителя сигналов на всех отрезках витых пар, подключенных к его портам, так что образуется единая среда передачи данных - логическая общая шина. Повторитель обнаруживает коллизию в сегменте в случае одновременной передачи сигналов по нескольким своим Rх -входам и посылает jam-последовательность на все свои Тх - выходы. Стандарт определяет скорость передачи данных 10 Мбит/с и max расстояние отрезка витой пары между двумя непосредственно связанными узлами не более 100 м при наличии витой пары не ниже категории 3.
Для обеспечения синхронизации станций при реализации процедур доступа CSMA/CD и надежного распознавания станциями коллизий в стандарте определено max число концентраторов между любыми двумя станциями сети, а именно 4. Это правило носит название «правила 4-х хабов» и оно заменяет «правило 5-4-3», применяемое к коаксиальным сетям. При создании сети 10Base-T с большим числом станций концентраторы можно соединять друг с другом иерархическим способом, образуя древовидную структуру.
Общее количество станций в сети 10Base-T не должно превышать общего предела в 1024.
Оптоволоконный Ethernet В качестве среды передачи данных 10 мегабитный Ethernet использует оптическое волокно. Оптоволоконные стандарты в качестве основного типа кабеля рекомендуют достаточно дешевое многомодовое оптоволокно, обладающее полосой пропускания 500-800 МГц при длине кабеля 1 км. Допустимо и более дорогое одномодовое оптоволокно с полосой пропускания в несколько гигагерц, но при этом нужно применять специальный тип трансивера.
Функционально сеть Ethernet на оптическом кабеле состоит из тех же элементов, что и сеть стандарта 10Base-T - сетевых адаптеров.10Base-F - волоконно-оптический кабель. Топология аналогична топологии стандарта 10Base-T. Имеется несколько вариантов этой спецификации - FOIRL (длина оптоволоконной связи между повторителями до 1 км при общей длине сети не более 2500 м. max число повторителей между любыми узлами сети - 4), 10Base-FL (max расст. между узлом и концентратором увеличилось до 2000 м. max число повторителей между узлами осталось равным 4, а max длина сети - 2500 м), 10Base-FB (Между узлами сети можно установить до 5 повторителей 10Base-FB при max длине одного сегмента 2000 м и max длине сети 2740 м). l0Base-FB имеет также название синхронный Ethernet.