
- •1 Эволюция вычислительных систем. Основные программные и аппаратные компоненты сети.
- •Появление глобальных сетей : соединении компьютеров, находящихся на большом расстоянии друг от друга. Терминалы соединялись с компьютерами через телефонные сети с помощью модемов.
- •2. Понятие “открытая система”. Многоуровневый подход. Протокол. Интерфейс. Стек протоколов.
- •Амплитудно-частотная характеристика показывает, как затухает амплитуда синусоиды на выходе линии связи по сравнению с амплитудой на ее входе для всех возможных частот передаваемого сигнала.
- •Аналоговая модуляция
- •Методы аналоговой модуляции
- •Цифровое кодирование
- •Требования к методам цифрового кодирования
- •Скрэмблирование
- •9. Методы коммутации. Коммутация каналов. Коммутация пакетов. Коммутация сообщений.
- •Возникновение коллизии - ситуация, когда две станции одновременно пытаются передать кадр данных по общей среде. Содержимое обоих кадров сталкивается на общем кабеле и происходит искажение информации.
- •Время двойного оборота и распознавание коллизий
- •12. Форматы кадров технологии Ethernet: кадр 802.3, кадр Ethernet II. Домен коллизий.
- •Кадр 802.3/llc
- •Домен коллизий
- •13. Сети Ethernet на коаксиальном кабеле (10Base-5, 10Base-2), на витой паре (10Base-t), на оптоволоконном кабеле (10Base-fl, 10Base-fb). Правила: 3-4-5 и 5 хабов. Стандарт 10Base-5
- •Стандарт 10Base-2
- •14. Технология Token Ring. Маркерный метод доступа к среде передачи данных. Отличие метода доступа для 16 Мбит/с.
- •Маркерный метод доступа к разделяемой среде
- •15. Типы и формат кадров Token Ring. Оборудование и спецификация физического уровня Token Ring.
- •Маркер Кадр маркера состоит из трех полей, каждое длиной в один байт.
- •Физический уровень технологии Token Ring
- •16 Технология Fast Ethernet. Отличия от Ethernet. Полнодуплексный режим работы. Автопереговоры.
- •17 Оборудование и спецификация физического уровня: 100Base-tx, 100Base-t4, 100Base-fx
- •18 Технология fddi. Обеспечение отказоустойчивости. Особенности метода доступа к среде передачи данных fddi. Одиночное и двойное присоединение к сети fddi.
- •19 Сетевое оборудование лвс. Сетевые адаптеры. Дополнительные функции сетевых адаптеров.
- •20 Ограничения сети построенной на общей разделяемой среде. Логическая структуризация сети. Преимущества логической структуризации.
- •Основные недостатки сети на одной разделяемой среде начинают проявляться при превышении некоторого порога количества узлов, подключенных к разделяемой среде
- •21 Мост лвс. Алгоритм работы прозрачного моста. Ограничение сети построенной на мостах и коммутаторах.
- •22 Коммутатор лвс. Структурная схема коммутатора и коммутационной матрицы. Коммутация "на лету" и с полной буферизацией.
- •23 Управление потоком кадров при полнодуплексном режиме работы. Управление потоком кадров при полудуплексном режиме работы.
- •24 Алгоритм построения покрывающего дерева. Характеристики, влияющие на производительность коммутаторов.
- •26 Протокол ip. Заголовок ip пакета. Фрагментация и восстановление.
- •27 Ip адресация. Классы ip адресов. Разбиение ip-сетей на подсети при помощи масок. Реальные и частные ip адреса.
- •28 Протокол arp. Кэш arp. Статические, динамические и Proxy записи arp. Функционирование Proxy-arp. Форматы сообщений arp. Revers arp.
- •29 Протокол icmp. Основные сообщения icmp. Формат icmp сообщений. Случаи когда не порождаются icmp сообщения. Протокол udp. Формат заголовка udp.
- •30 Протокол надежной доставки tcp-сообщений
- •33 Дистанционно-вектрный алгоритм построения таблиц маршрутизации. Проблема счета до бесконечности. Способы ускорения восстановления.
- •34 Протокол маршрутизации rip ip. Форматы сообщений rip ip V.1 и rip ip V.2. Преимущества rip ip V.2. Ограничения rip ip.
- •35 База данных состояния связей. Алгоритм spf построения таблиц маршрутизации. Тупиковые связи.
- •36 Протокол маршрутизации ospf. Определение метрики линии связи. Поддержка множественных маршрутов. Паразитный эффект множественных маршрутов.
- •37 Построение базы данных состояния связей. Протокол Hello. Протокол обмена. Протокол затопления. Типы сообщений ospf.
- •38 Типы сетей в терминах ospf. Уменьшение числа отношений смежности в широковещательной сети. Транзитная сеть (вершина). Выборы главного маршрутизатора. Группы рассылки ospf.
- •39 Разбиение автономной системы на области. Магистральная и периферийные области. Типы маршрутизаторов ospf: внуриобластной, abr, asbr. Распространение информации о внешнеобластных и внешних сетях.
- •40 Полностью изолированная область. Транзитная область. Виртуальная связь. Тупиковая область. Полностью тупиковая область. Типы и формат заголовка ospf сообщений.
- •41 Функционирование nat. Маскарадинг портов. Редакторы nat. Функционирование Proxy. Преимущества Proxy.
- •43 Служба dns. Иерархические доменные имена. Зоны. Полномочные серверы dns. Первичные и вторичные. Серверы кэширования и пересылок.
- •44 Порядок разрешения имен. Рекурсивные и итеративные запросы. Формат и типы записей ресурсов. Делегирование зон. Файлы зон. Файл корневых ссылок. Динамические обновления записей ресурсов.
- •45 Групповая рассылка ip пакетов. Преобразование группового адреса в mac адрес. Функционирование групповой рассылки на хосте и маршрутизаторе. Сеть mBone.
- •46 Протокол igmp. Типы сообщений igmp V.1 и V.2. Ограничители групповой рассылки. Работа интерфейса маршрутизатора в режиме igmp-Proxy.
22 Коммутатор лвс. Структурная схема коммутатора и коммутационной матрицы. Коммутация "на лету" и с полной буферизацией.
Обрабатывает кадры параллельно для обслуживания потока, поступающего на каждый порт, в устройство ставился отдельный специализированный процессор, который реализовывал алгоритм моста. По сути, коммутатор - это мультипроцессорный мост, способный параллельно продвигать кадры сразу между всеми парами очень высокая производительность, с которой коммутаторы передают кадры между сегментами сети своих портов. Коммутаторы всегда выпускаются с процессорами портов, которые могут передавать кадры с той максимальной скоростью, на которую рассчитан протокол вобрали в себя многие дополнительные функции поддержка виртуальных сетей (VLAN), приоритезация трафика, использование магистрального порта по умолчанию и т. п.
Каждый из 8 портов 10Base-T обслуживается одним процессором пакетов Ethernet - ЕРР (Ethernet Packet Processor). Кроме того, коммутатор имеет системный модуль, который координирует работу всех процессоров ЕРР. Системный модуль ведет общую адресную таблицу коммутатора и обеспечивает управление коммутатором по протоколу SNMP. Для передачи кадров между портами используется коммутационная матрица, соединяя несколько процессоров с несколькими модулями памяти.
Коммутационная матрица работает по принципу коммутации каналов. Для 8 портов матрица может обеспечить 8 одновременных внутренних каналов при полудуплексном режиме работы портов и 16 - при полнодуплексном, когда передатчик и прием ник каждого порта работают независимо друг от друга.
а - конвейерная обработка; б - обычная обработка с полной буферизацией
Прием первых байт кадра процессором входного порта, включая прием байт адреса назначения.
Поиск адреса назначения в адресной таблице коммутатора (в кэше процессора или в общей таблице системного модуля).
Коммутация матрицы.
Прием остальных байт кадра процессором входного порта.
Прием байт кадра (включая первые) процессором выходного порта через коммутационную матрицу.
Получение доступа к среде процессором выходного порта.
Передача байт кадра процессором выходного порта в сеть.
Главной причиной повышения производительности сети при использовании коммутатора является параллельная обработка нескольких кадров.
Неблокирующий коммутатор - это такой коммутатор, который может передавать кадры через свои порты с той же скоростью, с которой они на них поступают.
23 Управление потоком кадров при полнодуплексном режиме работы. Управление потоком кадров при полудуплексном режиме работы.
При полнодуплексном режиме работы коммутатора узлу разрешается отправлять кадры в коммутатор всегда, когда это ему нужно, недостаток такого метода - коммутаторы сети могут сталкиваться с перегрузками, не имея при этом никаких средств регулирования («притормаживания») потока кадров. Причина перегрузок кроется в ограниченной пропускной способности отдельного порта, которая определяется временными параметрами протокола. Порт Ethernet не может передавать больше 14 880 кадров в секунд.
Если кадры уходят с скоростью меньшей чем поступают, они заносятся в буфер. Какой бы ни был объем буфера порта, он в какой-то момент времени обязательно переполнится. В некоторых протоколах используются специальные кадры управления потоком «Приемник готов» (RR) и «Приемник не готов» (RNR) (например сеть X.25). В этом случае, когда очередь коммутатора доходит до опасной границы, происходит запрет на передачу кадров, пока очередь не уменьшится до нормального уровня.
Если порты коммутатора работают в обычном, то есть в полудуплексном режиме, то у коммутатора имеется возможность оказать некоторое воздействие на конечный узел и заставить его приостановить передачу кадров, пока у коммутатора не разгрузятся внутренние буферы.
Полнодуплексная версиях протокола Ethernet и Fast Ethernet содержит для управления потоком. Соседнему узлу можно направлять команды: «Приостановить передачу» и «Возобновить передачу». Такая простая процедура управления потоком окажется непригодной в сетях Gigabit Ethernet. Полная приостановка приема кадров от соседа при такой большой скорости передачи кадров (1 488 090 кадр/с) может быстро вызвать переполнение внутреннего буфера и произойдет перегрузка сети. Для работы с такими скоростными протоколами необходим более тонкий механизм регулирования потока, который бы указывал, на какую величину нужно уменьшить интенсивность потока входящих кадров в перегруженный коммутатор, а не приостанавливал этот поток до нуля.
При работе порта в полудуплексном режиме коммутатор не может изменять протокол и пользоваться для управления потоком новыми командами, такими как «Приостановить передачу» и «Возобновить передачу». Зато у коммутатора появляется возможность воздействовать на конечный узел с помощью механизмов алгоритма доступа к среде, который конечный узел обязан отрабатывать.
Метод обратного давления (backpressure) состоит в создании искусственных коллизий в сегменте, который чересчур интенсивно посылает кадры в коммутатор. Для этого коммутатор обычно использует jam-последовательность, отправляемую на выход порта, к которому подключен сегмент (или узел), чтобы приостановить его активность.
Второй метод «торможения» конечного узла в условиях перегрузки внутренних буферов коммутатора основан на агрессивном поведении порта коммутатора при захвате среды либо после окончания передачи очередного пакета, либо после коллизии.