
- •1 Эволюция вычислительных систем. Основные программные и аппаратные компоненты сети.
- •Появление глобальных сетей : соединении компьютеров, находящихся на большом расстоянии друг от друга. Терминалы соединялись с компьютерами через телефонные сети с помощью модемов.
- •2. Понятие “открытая система”. Многоуровневый подход. Протокол. Интерфейс. Стек протоколов.
- •Амплитудно-частотная характеристика показывает, как затухает амплитуда синусоиды на выходе линии связи по сравнению с амплитудой на ее входе для всех возможных частот передаваемого сигнала.
- •Аналоговая модуляция
- •Методы аналоговой модуляции
- •Цифровое кодирование
- •Требования к методам цифрового кодирования
- •Скрэмблирование
- •9. Методы коммутации. Коммутация каналов. Коммутация пакетов. Коммутация сообщений.
- •Возникновение коллизии - ситуация, когда две станции одновременно пытаются передать кадр данных по общей среде. Содержимое обоих кадров сталкивается на общем кабеле и происходит искажение информации.
- •Время двойного оборота и распознавание коллизий
- •12. Форматы кадров технологии Ethernet: кадр 802.3, кадр Ethernet II. Домен коллизий.
- •Кадр 802.3/llc
- •Домен коллизий
- •13. Сети Ethernet на коаксиальном кабеле (10Base-5, 10Base-2), на витой паре (10Base-t), на оптоволоконном кабеле (10Base-fl, 10Base-fb). Правила: 3-4-5 и 5 хабов. Стандарт 10Base-5
- •Стандарт 10Base-2
- •14. Технология Token Ring. Маркерный метод доступа к среде передачи данных. Отличие метода доступа для 16 Мбит/с.
- •Маркерный метод доступа к разделяемой среде
- •15. Типы и формат кадров Token Ring. Оборудование и спецификация физического уровня Token Ring.
- •Маркер Кадр маркера состоит из трех полей, каждое длиной в один байт.
- •Физический уровень технологии Token Ring
- •16 Технология Fast Ethernet. Отличия от Ethernet. Полнодуплексный режим работы. Автопереговоры.
- •17 Оборудование и спецификация физического уровня: 100Base-tx, 100Base-t4, 100Base-fx
- •18 Технология fddi. Обеспечение отказоустойчивости. Особенности метода доступа к среде передачи данных fddi. Одиночное и двойное присоединение к сети fddi.
- •19 Сетевое оборудование лвс. Сетевые адаптеры. Дополнительные функции сетевых адаптеров.
- •20 Ограничения сети построенной на общей разделяемой среде. Логическая структуризация сети. Преимущества логической структуризации.
- •Основные недостатки сети на одной разделяемой среде начинают проявляться при превышении некоторого порога количества узлов, подключенных к разделяемой среде
- •21 Мост лвс. Алгоритм работы прозрачного моста. Ограничение сети построенной на мостах и коммутаторах.
- •22 Коммутатор лвс. Структурная схема коммутатора и коммутационной матрицы. Коммутация "на лету" и с полной буферизацией.
- •23 Управление потоком кадров при полнодуплексном режиме работы. Управление потоком кадров при полудуплексном режиме работы.
- •24 Алгоритм построения покрывающего дерева. Характеристики, влияющие на производительность коммутаторов.
- •26 Протокол ip. Заголовок ip пакета. Фрагментация и восстановление.
- •27 Ip адресация. Классы ip адресов. Разбиение ip-сетей на подсети при помощи масок. Реальные и частные ip адреса.
- •28 Протокол arp. Кэш arp. Статические, динамические и Proxy записи arp. Функционирование Proxy-arp. Форматы сообщений arp. Revers arp.
- •29 Протокол icmp. Основные сообщения icmp. Формат icmp сообщений. Случаи когда не порождаются icmp сообщения. Протокол udp. Формат заголовка udp.
- •30 Протокол надежной доставки tcp-сообщений
- •33 Дистанционно-вектрный алгоритм построения таблиц маршрутизации. Проблема счета до бесконечности. Способы ускорения восстановления.
- •34 Протокол маршрутизации rip ip. Форматы сообщений rip ip V.1 и rip ip V.2. Преимущества rip ip V.2. Ограничения rip ip.
- •35 База данных состояния связей. Алгоритм spf построения таблиц маршрутизации. Тупиковые связи.
- •36 Протокол маршрутизации ospf. Определение метрики линии связи. Поддержка множественных маршрутов. Паразитный эффект множественных маршрутов.
- •37 Построение базы данных состояния связей. Протокол Hello. Протокол обмена. Протокол затопления. Типы сообщений ospf.
- •38 Типы сетей в терминах ospf. Уменьшение числа отношений смежности в широковещательной сети. Транзитная сеть (вершина). Выборы главного маршрутизатора. Группы рассылки ospf.
- •39 Разбиение автономной системы на области. Магистральная и периферийные области. Типы маршрутизаторов ospf: внуриобластной, abr, asbr. Распространение информации о внешнеобластных и внешних сетях.
- •40 Полностью изолированная область. Транзитная область. Виртуальная связь. Тупиковая область. Полностью тупиковая область. Типы и формат заголовка ospf сообщений.
- •41 Функционирование nat. Маскарадинг портов. Редакторы nat. Функционирование Proxy. Преимущества Proxy.
- •43 Служба dns. Иерархические доменные имена. Зоны. Полномочные серверы dns. Первичные и вторичные. Серверы кэширования и пересылок.
- •44 Порядок разрешения имен. Рекурсивные и итеративные запросы. Формат и типы записей ресурсов. Делегирование зон. Файлы зон. Файл корневых ссылок. Динамические обновления записей ресурсов.
- •45 Групповая рассылка ip пакетов. Преобразование группового адреса в mac адрес. Функционирование групповой рассылки на хосте и маршрутизаторе. Сеть mBone.
- •46 Протокол igmp. Типы сообщений igmp V.1 и V.2. Ограничители групповой рассылки. Работа интерфейса маршрутизатора в режиме igmp-Proxy.
17 Оборудование и спецификация физического уровня: 100Base-tx, 100Base-t4, 100Base-fx
Физический уровень 100Base-FX — многомодовое оптоволокно, два волокна
В то время как Ethernet со скоростью передачи 10 Мбит/с использует манчестерское кодирование для представления данных при передаче по кабелю, в стандарте Fast Ethernet определен другой метод кодирования — 4В/5В. При этом методе каждые 4 бита данных подуровня MAC представляются 5 битами. Избыточный бит позволяет применить потенциальные коды при представлении каждого из пяти бит в виде электрических или оптических импульсов. Существование запрещенных комбинаций символов позволяет отбраковывать ошибочные символы, что повышает устойчивость работы сетей с 100Base-FX/TX.
После преобразования 4-битовых порций кодов MAC в 5-битовые порции физического уровня их необходимо представить в виде оптических или электрических сигналов в кабеле, соединяющем узлы сети. Спецификации 100Base-FX и 100Base-TX используют для этого различные методы физического кодирования — NRZI и MLT-3 соответственно (как и в технологии FDDI при работе через оптоволокно и витую пару).
Физический уровень 100Base-TX - витая пара UTP Cat 5 или STP Туре 1, две пары
В качестве среды передачи данных спецификация 100Base-TX использует кабель UTP категории 5 или кабель STP Type 1. Максимальная длина кабеля в обоих случаях — 100 м.
Основные отличия от спецификации 100Base-FX — использование метода MLT-3 для передачи сигналов 5-битовых порций кода 4В/5В по витой паре, а также наличие функции автопереговоров для выбора режима работы порта. Схема автопереговоров позволяет двум соединенным физически устройствам, которые поддерживают несколько стандартов физического уровня, отличающихся битовой скоростью и количеством витых пар, выбрать наиболее выгодный режим работы.
схема автопереговоров является стандартом технологии 100Base-T. определено 5 различных режимов работы, которые могут поддерживать устройства 100Base-TX или 100Base-T4 на витых парах:
10Base-T — 2 пары категории 3;
10Base-T full-duplex — 2 пары категории 3;
100Base-TX - 2 пары категории 5 (или Type 1A STP);
100Base-T4 — 4 пары категории 3;
100Base-TX full-duplex — 2 пары категории 5 (или Type 1A STP).
Режим 10Base-T имеет самый низкий приоритет при переговорном процессе, а полнодуплексный режим 100Base-T4 — самый высокий. Переговорный процесс происходит при включении питания устройства, а также может быть инициирован в любой момент модулем управления устройства.
Физический уровень 100Base-T4 — витая пара UTP Cat 3, четыре пары Спецификация 100Base-T4 была разработана для того, чтобы можно было использовать для высокоскоростного Ethernet имеющуюся проводку на витой паре категории 3. Эта спецификация позволяет повысить общую пропускную способность за счет одновременной передачи потоков бит по всем 4 парам кабеля. Спецификация 100Base-T4 появилась позже других спецификаций физического уровня Fast Ethernet. Разработчики этой технологии в первую очередь хотели создать физические спецификации, наиболее близкие к спецификациям 10Base-T и 10Base-F, которые работали на двух линиях передачи данных: двух парах или двух волокнах. Для реализации работы по двум витым парам пришлось перейти на более качественный кабель категории 5.
В то же время разработчики конкурирующей технологии 100VG-AnyLAN изначально сделали ставку на работу по витой паре категории 3; самое главное преимущество состояло не столько в стоимости, а в том, что она была уже проложена в подавляющем числе зданий. Поэтому после выпуска спецификаций 100Base-TX и 100Base-FX разработчики технологии Fast Ethernet реализовали свой вариант физического уровня для витой пары категории 3.
Вместо кодирования 4В/5В в этом методе используется кодирование 8В/6Т, которое обладает более узким спектром сигнала и при скорости 33 Мбит/с укладывается в полосу 16 МГц витой пары категории 3 (при кодировании 4В/5В спектр сигнала в эту полосу не укладывается). Каждые 8 бит информации уровня MAC кодируются 6-ю троичными цифрами (ternary symbols), то есть цифрами, имеющими три состояния. Каждая троичная цифра имеет длительность 40 не. Группа из 6-ти троичных цифр затем передается на одну из трех передающих витых пар, независимо и последовательно.
Четвертая пара всегда используется для прослушивания несущей частоты в целях обнаружения коллизии. Скорость передачи данных по каждой из трех передающих пар равна 33,3 Мбит/с, поэтому общая скорость протокола 100Base-T4 составляет 100 Мбит/с. В то же время из-за принятого способа кодирования скорость изменения сигнала на каждой паре равна всего 25 Мбод, что и позволяет использовать витую пару категории 3.