Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Ohrimenko+ / Ross S. A First Course in Probability_ Solutions Manual

.pdf
Скачиваний:
69
Добавлен:
11.06.2015
Размер:
13.47 Mб
Скачать

 

 

 

1000

 

 

149.5

 

 

 

 

 

 

 

23.

(a) P{149.5 < X < 200.5} = P

 

6

 

<

 

 

1000

1 5

 

 

 

 

 

 

 

 

 

 

6 6

 

 

 

 

 

 

 

 

200.5 166.7

 

= Φ

 

 

 

 

 

 

 

 

5000 / 36

 

 

 

 

 

≈ Φ(2.87) + Φ(1.46)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) P{X < 149.5} =

 

149.5 800(1/ 5)

P Z <

 

1 4

 

 

 

800

 

 

 

 

 

 

 

 

5 5

 

 

 

 

200.5

1000

 

 

 

 

 

 

 

6

 

Z <

 

 

 

 

 

1 5

 

 

 

1000

 

 

 

 

 

 

 

 

 

 

 

6 6

 

 

 

 

 

149.5 166.7

−Φ

 

 

 

 

 

 

 

 

5000 / 36

 

 

 

1 = .9258.

=P{Z < .93}

=1 − Φ(.93) = .1762.

24.With C denoting the life of a chip, and φ the standard normal distribution function we have

 

6

 

1.8×106 1.4 ×106

 

P{C < 1.8 × 10

 

} = φ

 

 

 

 

 

5

 

 

 

3×10

 

 

 

 

 

 

 

 

= φ(1.33)

 

 

 

 

= .9082

 

 

Thus, if N is the number of the chips whose life is less than 1.8 × 106 then N is a binomial random variable with parameters (100, .9082). Hence,

 

19.5 90.82

 

 

 

 

 

P{N > 19.5} 1 φ

 

 

= 1 φ(24.7) 1

90.82(.0918)

 

 

 

25. Let X denote the number of unacceptable items among the next 150 produced. Since X is a binomial random variable with mean 150(.05) = 7.5 and variance 150(.05)(.95) = 7.125, we obtain that, for a standard normal random variable Z.

P{X 10} = P{X 10.5}

 

 

X 7.5

10.5 7.5

= P

7.125

7.125

 

 

 

 

P{Z 1.1239} = .8695

The exact result can be obtained by using the text diskette, and (to four decimal places) is equal to .8678.

 

 

 

 

 

27.

P{X > 5,799.5} =

 

799.5

P Z >

2,500

 

 

 

 

 

 

 

 

 

 

= P{Z > 15.99} = negligible.

68

Chapter 5

28.Let X equal the number of lefthanders. Assuming that X is approximately distributed as a binomial random variable with parameters n = 200, p = .12, then, with Z being a standard normal random variable,

 

 

X 200(.12)

 

 

P{X > 19.5} =

 

>

19.5 200(.12)

P

200(.12)(.88)

 

 

 

 

200(.12)(.88)

 

 

 

 

 

P{Z > .9792}

.8363

29.Let s be the initial price of the stock. Then, if X is the number of the 1000 time periods in which the stock increases, then its price at the end is

suXd1000-X = sd1000 u X

d

Hence, in order for the price to be at least 1.3s, we would need that

X

d1000 du >1.3

or

X > log(1.3) 1000log(d) = 469.2 log(u / d)

That is, the stock would have to rise in at least 470 time periods. Because X is binomial with parameters 1000, .52, we have

 

 

X 1000(.52)

 

 

P{X > 469.5} =

 

>

469.5 1000(.52)

P

1000(.52)(.48)

 

 

 

 

1000(.52)(.48)

 

 

 

 

 

P{Z > 3.196}

.9993

30.

P{in black} =

 

 

 

 

 

 

P{5

 

 

black}α

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P{5

 

black}α + P{5

 

 

white}(1α)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

e

(54)2

/ 8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

α

 

 

 

 

 

=

 

 

 

 

 

 

 

2

 

 

2π

 

 

 

 

 

 

1

 

 

e

(54)2 / 8

 

1

e

(56)2

/18

 

 

 

 

 

 

 

 

 

 

 

 

 

 

α + (1 α)

 

 

 

 

 

 

 

 

2 2π

 

 

 

 

3 2π

 

 

 

 

 

 

 

 

 

 

α e1 / 8

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

α e1 / 8

+

(1α)

e1 / 8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

α is the value that makes preceding equal 1/2

Chapter 5

69

 

 

 

 

 

 

 

 

 

 

 

A

 

 

dx

 

a

 

 

dx

 

 

A

 

 

a2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

31.

(a)

E[

 

X a

 

] = (x a)

A

+ (a x)

 

A

=

2

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

 

 

0

 

 

 

 

 

 

 

A

 

 

 

 

 

 

 

 

 

 

 

 

d

( ) =

 

2a

1 = 0 a = A/ 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

da

 

 

 

A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b)

E[

 

X a

 

] = a (a x)λeλxdx + (x a)λeλxdx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= a(1eλa ) + aeλa +

eλa

 

1

 

+ aeλa +

eλa

aeλa

 

 

 

 

 

 

 

 

 

 

 

λ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

λ

 

 

 

 

 

λ

 

 

 

Differentiation yields that the minimum is attained at a where

 

 

 

 

eλ

 

 

 

 

=1/ 2 or a = log 2/λ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(c)

Minimizing a = median of F

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

32.

(a)

e1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b)

e1/2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

33.

e1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

34.

(a)

P{X > 20} = e1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) P{X > 30 X > 10 =

P{X > 30}

=

1/ 4

= 1/3

 

 

 

 

 

 

 

3/ 4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P{X >10}

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

50

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

35.

(a)

exp

λ(t)dt = e.35

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

40

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b)

e1.21

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

= e4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

36.

(a)

1 F(2) = exp

t3dt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b)

exp[(.4)4/4] exp[(1.4)4/4]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(c)

exp t3dt = e15/4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

37.(a) P{ X > 1/2} = P{X > 1/2} + P{X < 1/2} = 1/2

(b)P{ X a} = P{a X a} = a, 0 < a < 1. Therefore,

f X (a) =1, 0 < a < 1

That is, X is uniform on (0, 1).

70

Chapter 5

38.For both roots to be real the discriminant (4Y)2 44(Y + 2) must be 0. That is, we need that Y2 Y + 2. Now in the interval 0 < Y < 5.

Y2 Y + 2 Y 2 and so

P{Y2 Y + 2} = P{Y 2} = 3/5.

39.FY(y) = P{log X y}

=P{X ey} = FX(ey)

fY(y) = fX(ey)ey = eyee y

40.FY(y) = P{eX y}

=FX(log y)

fY(y) = fX (log y) 1y = 1y , 1 < y < e

Chapter 5

71

Theoretical Exercises

1.The integration by parts formula udv = uv vdu with dv = 2bxebx2 , u = x/2b yields that

 

x2ebx2 dx = xe2bbx2 +

1

ebx2 dx

 

 

2b

 

 

0

 

 

 

0

 

0

 

 

 

 

=

1

ey 2 / 2dy by y = x 2b

 

 

 

(2b)3 / 2

 

 

 

 

 

 

0

 

 

 

 

 

 

 

=

2π

 

 

1

 

=

π

 

 

 

 

2 (2b)3 / 2

 

4b3 / 2

 

 

where the above uses that

1

 

ey 2 / 2dy = 1/2. Hence, a =

4b3 / 2

 

 

 

 

2π

0

 

 

 

 

π

 

 

 

 

 

 

 

 

 

 

 

 

∞ −y

 

 

 

 

 

 

 

 

 

2.

P{Y < −y}dy =

∫ ∫ fY (x)dx dy

 

 

 

 

 

0

0 −∞

 

 

 

 

 

 

 

 

 

 

= 0 x fY (x)dy dx = − 0 xfY (x) dx

 

 

 

−∞ 0

 

 

 

 

 

 

−∞

 

 

 

Similarly,

 

 

 

 

 

 

 

 

 

 

 

P{Y > y}dy = xfY (x) dx

 

 

 

 

 

 

 

0

0

 

 

 

 

 

 

 

 

 

 

Subtracting these equalities gives the result.

 

4.

E[aX + b] = (ax + b) f (x) dx = axf (x)dx + bf (x)dx

 

 

 

 

 

 

 

= aE[X] + b

 

5.

E[Xn] = P{X n > t}dt

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

= P{X n > xn}nxn1dx by t = xn, dt = nxn1dx

 

 

0

 

 

 

 

 

 

 

 

 

 

 

= P{X > x}nxn1dx

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

6.

Let X be uniform on (0, 1) and define Ea

to be the event that X is unequal to a. Since Ea is

 

 

 

 

 

 

 

 

 

 

 

a

the empty set, it must have probability 0.

72

Chapter 5

7.SD(aX + b) = Var(aX +b) = a2σ2 = a σ

8.Since 0 X c, it follows that X2 cX. Hence,

Var(X) = E[X2] (E[X])2

E[cX (E[X])2

=cE[X] (E[X])2

=E[X](c E[X])

=c2[α(1 α)] where α = E[X]/c c2/4

where the last inequality first uses the hypothesis that P{0 X c} = 1 to calculate that 0 α

1 and then uses calculus to show that maximum α(1 α) = 1/4.

0α1

9.The final step of parts (a) and (b) use that Z is also a standard normal random variable.

(a)P{Z > x} = P{Z < x} = P{Z < x}

(b)P{ Z > x} = P{Z > x} + P{Z < x} = P{Z > x} + P{Z > x}

=2P{Z > x}

(c)P{ Z < x} = 1 P{ Z > x} = 1 2P{Z > x} by (b)

=1 2(1 P{Z < x})

10.With c = 1/( 2πσ )we have

f(x) = ce( xµ)2 / 2σ 2

f (x) = ce( xµ)2 / 2σ 2 (x µ) /σ2

f ′′(x) = cσ4e( xµ)2 / 2σ 2 (x µ)2 cσ2e( xµ)2 / 2σ 2

Therefore,

f ′′(µ + σ) = f′′(µ σ) = cσ2e1/2 cσ2e1/2 = 0

 

2

 

λx

 

2

 

 

 

 

2

1

 

2

11.

E[X

] = P{X > x}2x

 

dx = 2xe

 

dx =

 

E[X ] = 2 / λ

 

 

λ

 

 

0

 

 

0

 

 

 

 

12.

(a)

b + a

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b)µ

(c)1 eλm = 1/2 or m = λ1 log 2

13.(a) all values in (a, b)

(b)µ

(c)0

Chapter 5

73

14.P{cX < x} = P{X < x/c} = 1 eλx/c

15.

λ(t) =

 

f (t)

=

1/ a

=

1

, 0 < t < a

 

 

 

 

 

F (t)

(a t) / a

a t

 

 

 

 

 

16.If X has distribution function F and density f, then for a > 0

 

 

FaX(t) = P{aX t} = F(t/a)

 

and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

fax =

 

1

 

f (t / a)

 

 

 

 

 

 

 

 

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thus,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

f (t / a)

 

1

 

 

 

 

λ

(t) =

 

 

a

=

λ

 

(t / a) .

 

1F(t / a)

 

 

 

aX

 

 

 

 

a

X

 

18.

E[Xk] =

 

xk λeλxdx = λk λeλx (λx)k dx

 

 

0

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

= λk Γ(k+1) = k!/λk

19.

E[Xk] =

 

1

 

xk λeλx (λx)t 1dx

 

 

Γ(t)

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

k

 

 

 

 

 

 

 

=

λ

 

λeλx (λx)t +k 1dx

 

 

Γ(t)

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

=

 

λk

 

Γ(t + k)

 

 

 

 

 

 

 

Γ(t)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Therefore,

E[X] = t/λ,

E[X2] = = λ2Γ(t + 2)/Γ(t) = (t + 1)t/λ2

and thus

Var(X) = (t + 1)t/λ2 t2/λ2 = t/λ2

74

Chapter 5

 

 

20.

Γ(1/2) = ex x1 / 2dx

 

 

0

 

 

 

=

2 ey 2 / 2 dy by x = y2/2, dx = ydy = 2x dy

 

 

0

 

= 2 π (2π)1 / 2 ey 2 / 2dy

 

 

0

 

= 2 π P{Z > 0} where Z is a standard normal

 

=

π

21.

1/λ(s) =

λeλx (λx)t 1dx / λeλs (λs)t 1

 

 

xs

 

= eλ( xs) (x / s)t 1dx

 

 

xs

 

=

eλy (1+ y / s)t 1dy by letting y = x s

 

 

y0

As the above, equal to the inverse of the hazard rate function, is clearly decreasing in s when t 1 and increasing when t 1 the result follows.

22.λ(s) = c(s v)β1, s > v which is clearly increasing when β 1 and decreasing otherwise.

23.F(α) = 1 e1

24.Suppose X is Weibull with parameters v, α, β. Then

 

 

X v

β

 

X v

1 / β

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P

 

 

 

 

x =

P

 

 

 

x

 

 

 

 

 

 

 

 

 

α

 

 

α

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= P{X v + αx1/β}

 

 

 

 

 

 

 

 

 

 

 

 

 

= 1 exp{x}.

 

 

 

 

 

 

 

 

 

 

 

 

 

25.

We use Equation (6.3).

 

 

 

 

Γ(a +1) Γ(a + b)

 

 

a

 

E[X] = B(a + 1, b)/B(A, b) =

 

=

 

 

 

 

 

 

 

 

 

 

 

 

Γ(a +b +1) Γ(a)

a + b

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

Γ(a + 2) Γ(a +b)

 

 

 

(a +1)a

 

E[X

] = B(a + 2, b)/B(a, b) =

 

 

=

 

 

 

 

Γ(a +b + 2) Γ(a)

 

(a +b +1)(a +b)

 

Thus,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Var(X) =

 

 

 

(a +1)a

 

 

a2

=

 

 

ab

 

 

 

 

 

(a

+b +1)(a +b)

(a +b)2

(a +b +1)(a

+b)2

 

 

 

 

 

26.(X a)/(b a)

Chapter 5

75

28.P{F(X x} = P{X F1(x)}

=F(F1(x))

=x

29.FY(x) = P{aX + b x}

 

 

 

x b

=

P X

 

when a > 0

a

 

 

 

 

= FX((x b)/a)

when a > 0.

fY(x) =

1

fX((x b)/a) if a > 0.

 

 

a

 

 

When a< 0, F (x) = P X

Y

fY(x) = 1 fX x b . a a

30.FY(x) = P{eX x}

=P{X log x}

FX(log x)

fY(x) = fX(log x)/x

=

1

e(log xµ)2

x

2πσ

 

 

x b

 

x b

 

 

=1

FX

 

and so

a

a

 

 

 

 

 

/ 2σ 2

76

Chapter 5

Chapter 6

Problems

2.(a) p(0, 0) = 138 127 = 14/39,

p(0,

1) = p(1, 0) =

 

8 5

= 10/39

 

 

 

13 12

 

 

 

 

 

 

5 4

 

 

 

 

 

 

p(1,

1) =

 

 

= 5/39

 

 

 

 

13 12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) p(0, 0, 0)

=

 

8 7 6

 

 

= 28/143

 

 

 

13

12 11

8 7 5

 

 

 

 

 

 

 

 

 

p(0, 0, 1)

 

= p(0, 1, 0) = p(1, 0, 0) =

= 70/429

 

13 12 11

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p(0, 1, 1)

 

= p(1, 0, 1) = p(1, 1, 0) =

8 5 4

 

= 40/429

 

13 12 11

 

 

 

 

 

5 4 3

 

 

 

 

 

p(1, 1, 1)

=

 

 

 

= 5/143

 

 

 

13

12 11

 

 

 

3.(a) p(0, 0) = (10/13)(9/12) = 15/26

p(0, 1) = p(1, 0) = (10/13)(3/12) = 5/26 p(1, 1) = (3/13)(2/12) = 1/26

(b)p(0, 0, 0) = (10/13)(9/12)(8/11) = 60/143

p(0, 0, 1) = p(0, 1, 0) = p(1, 0, 0) = (10/13)(9/12)(3/11) = 45/286

p(i, j, k) = (3/13)(2/12)(10/11) = 5/143

if i + j + k = 2

p(1, 1, 1) = (3/13)(2/12)(1/11) = 1/286

 

4.(a) p(0, 0) = (8/13)2, p(0, 1) = p(1, 0) = (5/13)(8/13), p(1, 1) = (5/13)2

(b)p(0, 0, 0) = (8/13)3

p(i, j, k) = (8/13)2(5/13) if i + j + k = 1 p(i, j, k) = (8/13)(5/13)2 if i + j + k = 2

5.p(0, 0) = (12/13)3(11/12)3

p(0, 1) = p(1, 0) = (12/13)3[1 (11/12)3]

p(1, 1) = (2/13)[(1/13) + (12.13)(1/13)] + (11/13)(2/13)(1/13)

Chapter 6

77

Соседние файлы в папке Ohrimenko+