Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Ohrimenko+ / Ross S. A First Course in Probability_ Solutions Manual

.pdf
Скачиваний:
69
Добавлен:
11.06.2015
Размер:
13.47 Mб
Скачать

35.(a) Let X1 denote the number of nonspades preceding the first ace and X2 the number of nonspades between the first 2 aces. It is easy to see that

P{X1 = i, X2 = j} = P{X1 = j, X2 = i}

and so X1 and X2 have the same distribution. Now E[X1] = 3j and so E[2 + X1 + X2] = 1065 .

(b)Same method as used in (a) yields the answer 5 39 +1 =

14

485 by the results of Example

26514 .

(c)Starting from the end of the deck the expected position of the first (from the end) heart is, from Example 3j, 1453 . Hence, to obtain all 13 hearts we would expect to turn over

 

52

53

+ 1 =

 

13

 

(53).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

14

 

 

 

 

 

 

 

14

 

 

 

 

 

 

 

 

 

 

 

 

 

 

36.

Let Xi = 1

roll i lands on 1

,

Yi = 1

roll i lands on 2

 

0

otherwise

 

 

0

otherwise

 

Cov(Xi, Yj) = E[Xi Yj] E[Xi]E[Yj]

 

 

 

 

 

 

1

 

 

 

 

 

 

 

i = j (since X Y

j

= 0 when i = j

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

36

 

 

 

 

 

 

 

i

 

 

 

=

1

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

= 0

 

i j

 

 

 

 

 

 

 

36

 

36

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cov Xi ,Yj = ∑∑Cov(Xi ,Yj )

 

 

 

 

 

i

 

 

 

 

 

j

 

 

 

i

j

 

 

 

=36n

37.Let Wi, i = 1, 2, denote the ith outcome.

Cov(X, Y) = Cov(W1 + W2 , W1 W2)

=Cov(W1, W1) Cov(W2, W2)

=Var(W1) Var(W2) = 0

38.E[XY] = ∫∫x y2e2xdydx

0 0

 

 

 

 

 

= x2e2xdx =

1

y2eydy =

Γ(3)

=

1

8

8

4

0

0

 

 

 

 

 

108

Chapter 7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

2e2x

 

 

 

 

2x

E[X] =

 

xfx (x)dx, fx (x) =

 

 

 

 

 

dy

= 2e

 

 

x

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

=

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2e2x

 

 

 

 

 

E[Y] =

yfY

( y)dy, fY ( y) =

 

 

x

dx

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

∞ ∞

 

 

 

2e2x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= ∫∫y

 

dxdy

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= ∫∫x

y

2e2x

dydx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

Γ(2)

 

1

 

= xe

2x

 

 

ye

2

 

 

 

 

 

 

 

 

 

 

 

dx =

 

 

dy =

 

 

 

=

 

 

 

 

 

 

4

 

4

 

4

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cov(X, Y) =

 

1

1 1

=

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

2 4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8

 

 

 

 

 

 

 

 

 

 

 

 

 

39.Cov(Yn, Yn) = Var(Yn) = 3σ2

Cov(Yn, Yn+1) = Cov(Xn + Xn+1 + Xn+2, Xn+1 + Xn+2 + Xn+3)

= Cov(Xn+1 + Xn+2, Xn+1 + Xn+2) = Var(Xn+1 + Xn+2) = 2σ2 Cov(Yn, Yn+2) = Cov(Xn+2, Xn+2) = σ2

Cov(Yn, Yn+j) = 0 when j 3

40. fY(y) = ey 1y ex / ydx = ey . In addition, the conditional distribution of X given that Y = y is exponential with mean y. Hence,

E[Y] = 1, E[X] = E[E[X Y]] = E[Y] = 1

Since, E[XY] = E[E[XY Y]] = E[YE[X Y]] = E[Y2] = 2 (since Y is exponential with mean 1, it follows that E[Y2] = 2). Hence, Cov(X, Y) = 2 1 = 1.

41.The number of carp is a hypergeometric random variable.

E[X] = 1060 = 6

Var(X) =

20(80) 3 7

=

336

from Example 5c.

 

 

 

 

 

 

99

10 10

99

 

 

 

Chapter 7

109

42.

(a) Let Xi = 1

 

pair i consists of a man and a woman

 

 

 

 

 

 

 

 

 

 

 

 

0

 

otherwise

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E[Xi] = P{Xi

= 1} =

 

 

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

19

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E[XiXj] = P{Xi = 1, Xj = 1} = P{Xi = 1}P{Xj = 1 X2 = 1}

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

10

 

9

 

, i j

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

19 17

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10

 

 

 

100

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E Xi

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

19

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10

 

 

 

 

 

 

 

10

 

 

 

10

 

 

 

 

 

10 9

 

 

10 2

 

 

 

900 18

 

 

Var

Xi

=10

 

 

 

 

 

1

 

 

 

 

+

10 9

 

 

 

 

 

 

 

 

 

=

 

 

 

 

 

 

 

 

19

 

19

 

 

 

 

 

 

19

(19)

2

17

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

19 17

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

pair i consists of a married couple

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) Xi =

otherwise

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E[Xi] =

1

, E[XiXj] = P{Xi = 1}P{Xj = 1 Xi = 1} =

 

1 1

, i j

 

 

 

 

 

 

 

19

19 17

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10

 

 

 

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E Xi

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

19

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10

 

 

 

 

 

 

 

 

1 15

 

 

 

 

 

 

 

 

1 1

 

 

 

1

2

 

 

180 18

 

 

 

 

 

 

Var

 

X

 

 

=10

 

 

 

 

 

 

 

 

 

 

+10

9

 

 

 

 

 

 

 

 

 

=

 

 

 

 

 

 

 

 

 

 

 

 

 

19 19

 

 

19 17

 

 

(19)2 17

 

 

 

 

 

 

 

i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

19

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

43.E[R] = n(n + m + 1)/2

 

 

 

 

n+m

 

 

 

 

 

 

nm

 

 

 

i2

n + m +1

2

 

Var(R) =

 

 

 

 

i=1

 

 

 

 

n + m

1

 

2

 

 

n + m

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The above follows from Example 3d since when F = G, all orderings are equally likely and the problem reduces to randomly sampling n of the n + m values 1, 2, …, n + m.

110

Chapter 7

44.From Example 8l n +nm + nnm+ m . Using the representation of Example 2l the variance can be computed by using

0

 

 

 

 

 

 

, j =1

 

 

n

 

m

 

n 1

 

 

 

E[I1Il+j] =

 

 

 

 

 

 

 

 

 

 

 

 

 

, n 1 j <1

 

 

 

 

 

 

 

n + m n + m 1 n + m 2

0

 

 

 

 

 

 

,

j =1

 

 

 

mn(m 1)(n 1)

 

 

 

E[IiIi+j] =

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n 1 j <1

(n + m)(n + m 1)(n + m 2)(n + m 3) ,

45.

(a)

Cov(X1 + X2 , X2 + X3 )

=

1

Var(X1 + X2 ) Var(X2 + X3 )

2

 

(b)

0

 

 

 

 

 

 

12

 

 

 

 

46.

E[I1I2] = E[I1I2

 

bank rolls i]P{bank rolls i}

 

i=2

=(P{roll is greater than i})2 P{bank rolls i}

i

=E[I12 ]

(E[I1])2

=E[I1] E[I2]

47.(a) It is binomial with parameters n 1 and p.

(b)Let xi,j equal 1 if there is an edge between vertices i and j, and let it be 0 otherwise. Then,

k i Xi,k , and so, for i j

 

 

 

 

 

Cov(Di, Dj) = Cov

 

Xi,k ,Xr, j

 

k i

r j

 

= ∑∑Cov(Xi,k , X r, j )

k i r j

=Cov(Xi, j , Xi, j)

=Var(Xi, j)

=p(1 p)

where the third equality uses the fact that except when k = j and r = i, Xi ,k and Xr, j are independent and thus have covariance equal to 0. Hence, from part (a) and the preceding we obtain that for i j,

ρ(Di, Dj) =

p(1 p)

=

1

(n 1) p(1 p)

n 1

 

 

Chapter 7

111

48.(a) E[X] = 6

(b)E[X Y = 1] = 1 + 6 = 7

(c)11 + 2 4 1 + 3 4 2 1 + 4 4 3 1 + 4 4 (5 + 6) 5 5 5 5 5 5 5 5

49.Let Ci be the event that coin i is being flipped (where coin 1 is the one having head probability .4), and let T be the event that 2 of the first 3 flips land on heads. Then

P(C1 T) =

 

 

 

P(T

C1 )P(C1 )

 

 

 

 

 

 

 

 

 

 

 

 

P(T

 

C )P(C ) + P(T

 

 

C

)P(C

)

 

 

 

 

 

 

1

1

 

 

2

2

 

=

 

3(.4)2 (.6)

 

 

= .395

 

 

3(.4)2 (.6) +3(.7)2 (.3)

 

 

Now, with Nj equal to the number of heads in the final j flips, we have

E[N10 T] = 2 + E[N7 T]

Conditioning on which coin is being used, gives

E[N7 T] = E[N7 TC1]P(C1T) + E[N7TC2]P(C2 T) = 2.8(.395) + 4.9(.605) = 4.0705 Thus, E[N10 T] = 6.0705.

50.

fX Y(x y) =

 

ex / yey / y

=

1

ex / y , 0 < x <

 

 

 

 

ex / yey / y dx

y

 

 

 

 

 

0

 

 

 

 

Hence, given Y = y, X is exponential with mean y, and so

E[X 2 Y = y] = 2y2

51.

fX Y(x y) =

ey / y

=

1

, 0 < x < y

y

y

 

 

 

 

 

 

ey / y dx

 

 

 

 

 

 

 

 

 

0

 

 

 

y

E[X 3 Y = y] = x3 1y dx = y3 / 4

0

52.The average weight, call it E[W], of a randomly chosen person is equal to average weight of all the members of the population. Conditioning on the subgroup of that person gives

r

 

r

E[W] = E{W

 

member of subgroup i]pi = wi pi

 

i=1

 

i=1

112

Chapter 7

53.Let X denote the number of days until the prisoner is free, and let I denote the initial door chosen. Then

E[X] = E[X I = 1](.5) + E[X I = 2](.3) + E[X I = 3](.2)

=(2 + E[X])(.5) + (4 + E[X])(.3) + .2

Therefore,

E[X] = 12

54.Let Ri denote the return from the policy that stops the first time a value at least as large as i appears. Also, let X be the first sum, and let pi = P{X = i}. Conditioning on X yields

12

E[R5] = E[R5 X = i}pi

i=2

12

= E[R5)(p2 + p3 + p4) + ipi 7p7

i=5

=366 E[R5 ] + 5(4/36) + 6(5/36) + 8(5/36) + 9(4/36) + 10(3/36) + 11(2/36) + 12(1/36)

6

= 36 E[R5 ] + 190/36

Hence, E[R5] = 19/3 6.33. In the same fashion, we obtain that

E[R6] = 1036 E[R6 ] + 361 [30 + 40 + 36 + 30 + 22 + 12]

implying that

E[R6] = 170/26 6.54

Also,

E[R8] =

15

E[R ] +

1

(140)

 

 

 

36

8

36

 

 

 

 

or,

E[R8] = 140/21 6.67

In addition,

E[R9] =

20

E[R ] +

1

(100)

 

 

26

9

36

 

 

 

or

E[R9] = 100/16 = 6.25

Chapter 7

113

And

E[R10] =

24

E[R ] +

1

(64)

 

 

36

10

36

 

 

 

or

E[R10] = 64/12 5.33

The maximum expected return is E[R8].

55.Let N denote the number of ducks. Given N = n, let I1, …, In be such that

1 if duck i is hit Ii = 0 otherwise

n

 

E[Number hit N = n] = E Ii

i=1

 

n

 

 

 

.6

10

 

= E[Ii ] = n 1

1

 

 

, since given

n

i=1

 

 

 

 

 

 

 

 

 

 

 

 

N = n, each hunter will independently hit duck i with probability .6/n.

 

 

.6

10

 

6

 

n

 

E[Number hit] = n 1

 

 

e

 

6

 

/ n!

n

 

 

n=0

 

 

 

 

 

 

 

 

56.

Let Ii = 1

 

elevator stops at floor i . Let X be the number that enter on the ground floor.

 

0

 

otherwise

 

 

 

 

 

 

 

 

 

 

 

 

 

N

 

 

 

N

 

 

 

 

 

N 1

k

 

 

 

 

 

 

 

 

 

 

E Ii

X = k

= E[Ii

X = k] =

N 1

 

 

 

 

 

 

 

 

N

 

i=1

 

 

 

i=1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

 

 

N 1 k

 

10 (10)k

 

 

 

 

 

 

 

E Ii

= N N

 

 

e

 

 

 

 

 

 

 

 

 

 

N

 

k!

 

 

 

 

 

 

 

 

i=1

 

k =0

 

 

 

 

 

 

 

 

 

= N Ne10/N = N(1 e10/N)

57.E N Xi = E[N]E[X ] = 12.5

i=1

58.Let X denote the number of flips required. Condition on the outcome of the first flip to obtain.

E[X] = E[X heads]p + E[x tails](1 p)

=[1 + 1/(1 p)]p + [1 + 1/p](1 p)

=1 + p/(1 p) + (1 p)/p

114

Chapter 7

59.(a) E[total prize shared] = P{someone wins} = 1 (1 p)n+1

(b)Let Xi be the prize to player i. By part (a)

n+1

 

=1 (1 p)n+1

E Xi

i=1

 

 

But, by symmetry all E[Xi] are equal and so

E[X] = [1 (1 p)n+1]/(n + 1)

(c)E[X] = p E[1/(1 + B)] where B, which is binomial with parameters n and p, represents the number of other winners.

60.(a) Since the sum of their number of correct predictions is n (one for each coin) it follows that one of them will have more than n/2 correct predictions. Now if N is the number of correct predictions of a specified member of the syndicate, then the probability mass function of the number of correct predictions of the member of the syndicate having more than n/2 correct predictions is

P{i correct} = P{N = i} + P(N = n i} i > n/2

=2P{N = i}

=P{N = i N > n/2}

(b)X is binomial with parameters m, 1/2.

(c)Since all of the X + 1 players (including one from the syndicate) that have more than n/2 correct predictions have the same expected return we see that

(X + 1) Payoff to syndicate = m + 2 implying that

E[Payoff to syndicate] = (m + 2) E[(X + 1)1]

(d) This follows from part (b) above and (c) of Problem 56.

 

 

pF(x)

61.

(a) P(M x) = P(M x

 

N = n)P(N = n) =F n (x) p(1p)n1 =

 

1(1p)F(x)

 

n=1

 

n=1

(b)P(M x N = 1) = F(x)

(c)P(M x N > 1) = F(x)P(M x)

(d)P(M x) = P(M x N = 1)P(N = 1) + P(M x N > 1)P(N > 1)

=F(x)p + F(x)P(M x)(1 p)

again giving the result

pF(x)

P(M x) = 1(1p)F(x)

Chapter 7

115

62. The result is true when n = 0, so assume that

P{N(x) n} = xn/(n 1)!

Now,

P{N(x) n + 1} = 1 P{N(x) n +1 U1 = y}dy

0

= x P{N(x y) n}dy

0

= x P{N(u) n}du

0

= x un1 /(n 1)! du by the induction hypothesis

0

= xn/n!

which completes the proof.

(b) E[N(x)] = P{N(x) > n = P{N(x) n +1} = xn / n! = ex

n=0

n=0

n=0

63.(a) Number the red balls and the blue balls and let Xi equal 1 if the ith red ball is selected and let it by 0 otherwise. Similarly, let Yj equal 1 if the jth blue ball is selected and let it be 0 otherwise.

 

 

 

 

 

Cov

 

Xi ,Yj = ∑∑Cov(Xi ,Yj )

 

 

i j

 

i j

Now,

E[Xi] = E[Yj] = 12/30

 

 

 

28

 

30

 

E[XiYj] = P{red ball i and blue ball j are selected} =

 

 

 

10

 

12

 

Thus,

 

 

 

 

 

 

 

28

30

 

 

2

 

 

Cov(X, Y) = 80 10

 

12

 

(12 / 30)

 

 

= 96/145

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

116

Chapter 7

(b)E[XY X] = XE[Y X] = X(12 X)8/20

where the above follows since given X, there are 12-X additional balls to be selected from among 8 blue and 12 non-blue balls. Now, since X is a hypergeometric random variable it follows that

E[X] = 12(10/30) = 4 and E[X 2] = 12(18)(1/3)(2/3)/29 + 42 = 512/29 As E[Y] = 8(12/30) = 16/5, we obtain

E[XY] = 52 (48 512/ 29) = 352/29,

and

Cov(X, Y) = 352/29 4(16/5) = 96/145

64.(a) E[X] = E[X type 1]p + E[X type 2](1 p) = pµ1 + (1 p)µ2

(b) Let I be the type.

E[X I] = µI , Var(X I) = σI2 Var(X) = E[σI2 ] + Var(µI )

=pσ12 + (1p)σ22 + pµ12 + (1p)µ22 [ pµ1 + (1p)µ2 ]2

65.Let X be the number of storms, and let G(B) be the events that it is a good (bad) year. Then

E[X] = E[X G]P(G) + E[X B]P(B) = 3(.4) + 5(.6) = 4.2

If Y is Poisson with mean λ, then E[Y 2] = λ + λ2. Therefore,

E[X 2] = E[X 2 G]P(G) + E[X 2 B]P(B) = 12(.4) + 30(.6) = 22.8

Consequently,

Var(X) = 22.8 (4.2)2 = 5.16

66.

E[X 2] =

1

{E[X 2

 

Y =1] + E[X 2

 

Y = 2] + E[X 2

 

Y = 3]}

 

 

 

 

3

 

 

 

 

 

 

 

 

 

=13{9 + E[(5 + X )2 ] + E[(7 + X )2 ]}

=13{83 + 24E[X ] + 2E[X 2 ]}

=13{443 + 2E[X 2 ]} since E[X] = 15

Hence,

Var(X) = 443 (15)2 = 218.

Chapter 7

117

Соседние файлы в папке Ohrimenko+