Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Ohrimenko+ / Ross S. A First Course in Probability_ Solutions Manual

.pdf
Скачиваний:
69
Добавлен:
11.06.2015
Размер:
13.47 Mб
Скачать

67.Let Fn denote the fortune after n gambles.

E[Fn] = E[E[Fn Fn1]] = E[2(2p 1)Fn1p + Fn1 (2p 1)Fn1]

=(1 + (2p 1)2)E[Fn1]

=[1 + (2p 1)2]2E[Fn2]

#

= [1 + (2p 1)2]nE[F0]

68.(a) .6e2 + .4e3

(b).6e2 23 +.4e3 33 3! 3!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

2 23

 

 

 

3 3 33

 

 

 

 

 

 

 

P{3,0}

 

 

.6e

 

 

 

e

 

 

 

 

 

+.4e

 

e

 

 

 

 

 

 

(c)

P{3 0} =

=

 

 

 

 

 

 

 

3!

 

 

 

3!

 

 

 

 

P{0}

 

 

 

 

 

 

 

.6e2 +.4e3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

69.

(a)

 

e

x

e

x

dx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x x3

 

 

x

 

1

 

y

 

3

 

 

 

 

 

Γ(4)

 

 

 

 

1

 

 

 

 

 

 

(b)

 

e

 

 

 

e

 

dx =

 

 

 

 

e

 

 

 

y

dy =

96

 

=

 

 

 

 

 

 

 

 

 

 

 

3!

 

96

 

 

 

 

 

16

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

exex

x3

 

exdx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(c)

 

0

 

 

 

 

 

3 !

 

 

 

 

 

 

 

=

 

2

=

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

81

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

exexdx

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

70.

(a)

 

1

pdp =1/ 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b)

 

1

p2dp =1/ 3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

n

i

 

 

 

 

 

 

ni

 

 

 

71.

P{X = i} = P{X = i

 

p}dp =

(1

p)

dp

 

i p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n i!(n i)!

=1/(n +1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1)!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i (n +

 

 

 

 

 

 

 

 

118

Chapter 7

72.

(a)

P{N i} = 1

P{N i

 

p}dp = 1

(1p)i1dp =1/i

 

 

 

 

 

 

 

 

 

0

0

 

 

 

 

(b) P{N = i} = P{N i} P{N i + 1} =

1

 

 

i(i +1)

 

 

 

 

 

 

 

 

(c)

E[N] = P{N i} = 1/ i = ∞ .

 

 

 

 

i=1

 

 

i=1

 

 

 

73.(a) E[R] = E[E[R S]] = E[S] = µ

(b)Var(R S) = 1, E[R S] = S Var(R) = 1 + Var(S) = 1 + σ2

(c)fR(r) = fS (s)FR S (r s)ds

=Ce(sµ)2 / 2σ 2 e(r s)2 / 2ds

 

 

 

 

 

µ + rσ

2

 

 

 

σ

2

2

 

 

 

 

 

 

 

 

 

 

 

 

= K

exp

S

 

 

 

 

 

ds exp {(ar

+ br)}

 

 

 

 

1+σ 2

 

1

+

σ2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hence, R is normal.

(d)E[RS] = E[E[RS S]] = E[SE[R S]] = E[S 2] = µ2 + σ2

Cov (R, S) = µ2 + σ2 µ2 = σ2

75.X is Poisson with mean λ = 2 and Y is Binomial with parameters 10, 3/4. Hence

(a)P{X + Y = 2} = P{X = 0)P{Y = 2} + P{X = 1}P{Y = 1} + P{X = 2}P{Y = 0}

= e2 10

(3/ 4)2

(1/ 4)8

+ 2e2 10

(3/ 4)(1/ 4)9

+ 2e2 (1/ 4)10

2

 

 

1

 

 

(b)P{XY = 0} = P{X = 0} + P{Y = 0} P{X = Y = 0}

=e2 + (1/4)10 e2(1/4)10

(c)E[XY] = E[X]E[Y] = 2 10 34 = 15

Chapter 7

119

77.The joint moment generating function, E[etX+sY] can be obtained either by using

E[etX+sY] = ∫∫etX +sY f (x, y)dy dx

or by noting that Y is exponential with rate 1 and, given Y, X is normal with mean Y and variance 1. Hence, using this we obtain

E[etX+sY Y] = esYE[EtX Y] = esY eYt+t 2 / 2

and so

E[etX+sY] = et 2 / 2E[e(s+t)Y ]

= et 2 / 2 (1s t)1 , s + t < 1

Setting first s and then t equal to 0 gives

E[etX] = et 2 / 2 (1t)1, t < 1

E[esY] = (1 s)1, s < 1

78.Conditioning on the amount of the initial check gives

E[Return] = E[Return A]/2 + E[Return B]/2

={AF(A) + B[1 F(A)]}/2 + {BF(B) + A[1 F(B)]}/2

={A + B + [B A][F(B) F(A)]}/2

> (A + B)/2

where the inequality follows since [B A] and [F(B) F(A) both have the same sign.

(b)If x < A then the strategy will accept the first value seen: if x > B then it will reject the first one seen; and if x lies between A and B then it will always yield return B. Hence,

E[Return of x-strategy] =

B

if A < x < B

(A + B) / 2

otherwise

(c)This follows from (b) since there is a positive probability that X will lie between A and B.

79.Let Xi denote sales in week i. Then

E[X1 + X2] = 80

Var(X1 + X2) = Var(X1) + Var(X2) + 2 Cov(X1, X2)

=72 + 2[.6(6)(6)] = 93.6

(a)With Z being a standard normal

 

+ X2

 

90 80

P(X1

> 90) = P Z >

 

 

 

 

 

 

93.6

= P(Z > 1.034) .150

120

Chapter 7

(b)Because the mean of the normal X1 + X2 is less than 90 the probability that it exceeds 90 is increased as the variance of X1 + X2 increases. Thus, this probability is smaller when the correlation is .2.

(c)In this case,

P(X1 + X2 > 90) =

 

90 80

 

P Z >

 

 

 

 

 

72 + 2[.2(6)(6)]

 

 

 

 

= P(Z > 1.076) .141

Chapter 7

121

Theoretical Exercises

1.Let µ = E[X]. Then for any a

E[(X a)2 = E[(X µ + µ a)2]

=E[(X µ)2] + (µ a)2 + 2E[(x µ)(µ a)]

=E[(X µ)2] + (µ a)2 + 2(µ a)E[(X µ)]

=E[(X µ)2 + (µ a)2

2.

E[ X a = (a x) f (x)dx + (x a) f (x)dx

 

 

x<a

x>a

 

 

 

= aF(a) xf (x)dx + xf (x)dx a[1F(a)]

 

 

 

x<a

x>a

 

 

 

Differentiating the above yields

 

 

 

 

 

derivative = 2af(a) + 2F(a) af(a) af(a) 1

 

Setting equal to 0 yields that 2F(a) = 1 which establishes the result.

3.

E[g(X, Y)] =

P{g(X ,Y ) > a}da

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

g (x, y)

 

=

∫∫ f (x, y)dydxda = ∫∫

 

daf (x, y)dydx

 

 

0

x, y:

 

 

0

 

 

g (x, y)>a

 

 

 

 

 

 

 

 

 

= ∫∫g(x, y)dydx

4.

g(X) = g(µ) + g(µ)(X µ) + g′′(µ)

 

(X µ)2

 

 

 

+ …

2

 

 

 

 

 

 

 

g(µ) + g(µ)(X µ) + g′′(µ) (X µ)2 2

Now take expectations of both sides.

5.If we let Xk equal 1 if Ak occurs and 0 otherwise then

n

 

X = Xk

 

k =1

 

Hence,

 

n

n

E[X] = E[Xk ] = P(Ak )

k =1

k =1

But

 

n

n

E[X] = P{X k} = P(Ck ) .

k =1

k =1

122

Chapter 7

6. X = X (t)dt and taking expectations gives

0

E[X] = E[X (t)] dt = P{X > t}dt

00

7.(a) Use Exercise 6 to obtain that

E[X] = P{X > t}dt P{Y > t}dt = E[Y]

00

(b)It is easy to verify that

X+ st Y+ and Yst X

Now use part (a).

8. Suppose X st Y and f is increasing. Then P{f(X) > a} = P{X > f 1(a)}

P{Y > f 1(a)} since x st Y = P{f(Y) > a}

Therefore, f(X) st f(Y) and so, from Exercise 7,

E[f(X)] E[f(Y)].

On the other hand, if E[f(X)] E[f(Y)] for all increasing functions f, then by letting f be the increasing function

f(x) =

1

if x > t

0

otherwise

then

P{X > t} = E[f(X)] E[f(Y)] = P{Y > t}

and so X >st Y.

9.

Let

 

 

 

Ij =

1

if a run of size k begins at the jth flip

 

 

otherwise

 

 

0

Then

nk +1

Number of runs of size k = I j

j=1

Chapter 7

123

 

 

 

 

 

 

 

 

nk +1

 

 

 

 

 

 

E[Number of runs of size k = E

I j

 

 

 

 

 

 

 

 

 

 

 

 

 

j =1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

nk

 

 

 

 

 

 

 

 

 

 

= P(I1 = 1) + P(I j =1) + P(Ink +1 =1)

 

 

 

 

 

 

 

 

 

 

 

j =2

 

 

 

 

 

 

 

 

 

 

= pk(1 p) + (n k 1)pk(1 p)2 + pk(1 p)

10.

1 =

n

 

n

 

n

 

n

 

 

 

n

 

E Xi

Xi = E Xi

Xi

= nE

X1

Xi

 

 

1

 

1

 

1

 

1

 

 

 

1

 

 

Hence,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

k

 

n

 

= k / n

 

 

 

 

 

 

 

 

E Xi

Xi

 

 

 

 

 

 

 

 

 

 

1

 

1

 

 

 

 

 

 

 

 

11.

Let

 

 

 

 

 

j never occurs

 

 

 

 

 

 

 

Ij = 1

outcome

 

 

 

 

 

 

 

 

 

0

 

otherwise

 

 

 

 

 

 

 

 

 

r

 

 

 

 

r

 

 

 

 

 

 

 

Then X = I j

and E[X] = (1p j )n

 

 

 

 

 

 

 

1

 

 

 

 

j =1

 

 

 

 

 

 

12.Let

 

Ij =

1

success on trial j

 

 

otherwise

 

 

0

 

 

n

 

 

n

 

E I j =

Pj independence not needed

 

 

1

 

 

1

 

 

 

n

 

n

 

Var

I j

= pj (1pj ) independence needed

 

 

 

1

 

1

13.

Let

 

 

 

 

 

Ij = 1

record at j

 

 

0

otherwise

E n I j = n E[I1 1

Var n I j = n

1 1

n

 

 

 

 

 

n

j ] = P{X j

is largest of X1,..., X j } = 1/ j

1

 

 

 

 

 

1

n

1

 

 

1

 

Var(I j ) =

 

 

 

 

 

 

j

1

j

 

1

 

 

 

 

124

Chapter 7

2
pi + p j

 

n

n

 

1 i is success

15.

µ = pi

by letting Number = Xi

where

Xi =

 

i=1

i=1

 

0 - - -

n

Var(Number) = pi (1pi )

i=1

maximization of variance occur when pi µ/n

minimization of variance when pi = 1, i = 1, …, [µ], p[µ]+1 = µ [µ]

To prove the maximization result, suppose that 2 of the pi are unequal—say pi pj. Consider a new p-vector with all other pk, k i, j, as before and with pi = p j = . Then in the variance formula, we must show

 

p

+ p

j

 

 

p

+ p

j

 

 

 

i

 

i

 

pi(1 pi) + pj(1 pj)

 

 

 

 

 

 

2

 

2

 

1

 

2

 

 

 

 

 

 

 

 

 

 

 

or equivalently,

pi2 + p2j 2 pi p j = ( pi p j )2 0.

The maximization is similar.

16.Suppose that each element is, independently, equally likely to be colored red or blue. If we let Xi equal 1 if all the elements of Ai are similarly colored, and let it be 0 otherwise, then

ir=1 Xi is the number of subsets whose elements all have the same color. Because

r

 

r

r

 

 

 

 

E Xi

= E[Xi ]= 2(1/ 2)

 

Ai

 

i=1

 

i=1

i=1

 

 

it follows that for at least one coloring the number of monocolored subsets is less than or equal to ir=1(1/ 2) Ai 1

17.Var(λX1 + (1λ)X2 )= λ2σ12 + (1λ)2σ22

d

( ) = 2λσ12

2(1λ)σ22

 

σ 2

 

= 0 λ =

2

dλ

σ12 +σ22

 

 

 

As Var(λX1 + (1 λ)X2) = E[(λX1 + (1λ)X2 µ)2 ]we want this value to be small.

Chapter 7

125

18.(a. Binomial with parameters m and Pi + Pj.

(b)Using (a) we have that Var(Ni + Nj) = m(Pi + Pj)(1 Pi Pj) and thus m(Pi + Pj)(1 Pi Pj) = mPi(1 Pi) + mPj(1 Pj) + 2 Cov(Ni, Nj) Simplifying the above shows that

Cov(Ni, Nj) = mPiPj.

19.Cov(X + Y, X Y) = Cov(X, X) + Cov(X, Y) + Cov(Y, X) + Cov(Y, Y)

=Var(X) Cov(X, Y) + Cov(Y, X) Var(Y)

=Var(X) Var(Y) = 0.

20.(a) Cov(X, Y Z)

=E[XY E[X Z]Y XE[Y Z] + E[X Z]E[Y Z] [Z]

=E[XY Z] E[X Z] E[Y Z] E[X Z]E[Y Z] + E[X Z]E[Y Z]

=E[XY Z] E[X Z]E[Y Z]

where the next to last equality uses the fact that given Z, E[X Z] and E[Y Z] can be treated as constants.

(b) From (a)

E[Cov(X, Y Z)] = E[XY] E[E[X Z]E[Y Z]]

On the other hand,

Cov(E[X Z], E[Y Z] = E[E[X Z]E[Y Z]] E[X]E[Y]

and so

 

E[Cov(X, Y Z)] + Cov(E[X Z], E[Y Z])

= E[XY] E[X]E[Y]

 

= Cov(X, Y)

(c) Noting that Cov(X, X Z) = Var(X Z) we obtain upon setting Y = Z that Var(X) = E[Var(X Z)] + Var(E[X Z])

21.(a) Using the fact that f integrates to 1 we see that

c(n, i) 1 xi1(1x)ni dx = (i 1)!(n i)!/n!. From this we see that

0

E[X(i)] = c(n + 1, i + 1)/c(n, i) = i/(n + 1)

E[X(2i) ] = c(n + 2, i + 2)/c(n, i) =

i(i +1)

(n + 2)(n +1)

 

126

Chapter 7

and thus

i(n +1i) Var(X(i)) = (n +1)2 (n + 2)

(b) The maximum of i(n + 1 i) is obtained when i = (n + 1)/2 and the minimum when i is either 1 or n.

22.Cov(X, Y) = b Var(X), Var(Y) = b2 Var(X)

ρ(X ,Y ) = b Var(X )

=

b

b2 Var(X )

 

b

26.Follows since, given X, g(X) is a constant and so

E[g(X)Y X] = g(X)E[Y X]

27.E[XY] = E[E[XY X]]

=E[XE[Y X]]

Hence, if E[Y X] = E[Y], then E[XY] = E[X]E[Y]. The example in Section 3 of random variables uncorrelated but not independent provides a counterexample to the converse.

28.The result follows from the identity

E[XY] = E[E[XY X]] = E[XE[Y X]] which is obtained by noting that, given X, X may be

treated as a constant.

29.x = E[X1 + … + Xn X1 + … + Xn = x] = E[X1 Xi = x]+... + E[Xn Xi = x]

=nE[X1 Xi = x]

Hence, E[X1 X1 + … + Xn = x] = x/n

30.

E[NiNj Ni] = NiE[Nj Ni] = Ni(n Ni)

p j

since each of the n Ni trials no resulting in

1p

 

 

i

 

outcome i will independently result in j with probability pj/(1 pi). Hence,

E[NiNj] = 1p jpi (nE[Ni ] E[Ni2 ])= 1p jpi [n2 pi n2 pi2 npi (1pi )]

= n(n 1)pi pj

and

Cov(Ni, Nj) = n(n 1)pi pj n2pi pj = npi pj

Chapter 7

127

Соседние файлы в папке Ohrimenko+