Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

МИКРОБНЫЕ БИОПЛЕНКИ

.pdf
Скачиваний:
256
Добавлен:
06.12.2013
Размер:
500.49 Кб
Скачать

Было показано, что альгинатная лиаза способствует более эффективной диффузии гентамицина и тобрамицина через альгинатный полисахарид биопленки P.aeruginosa. [83].

Ряд других авторов в качестве объекта воздействия на основании того что известны рассматривают некоторые специфические для биопленок сигнальные молекулы (ацил-гомосериновые лактоны). Предполагают, что новые виды обработки могли бы базироваться на разрушении этих систем коммуникации между бактериями в биопленках [66, 105], однако конкретных решений пока не найдено.

Используя данные о том, что молодые биопленки более восприимчивы к антибактериальным агентам, чем старые, предлагается развивать новые неинвазивные методы диагностики по раннему (доклиническому) обнаружению биопленок во внутренней среде. В свою очередь, это даст возможность более эффективно воздействовать на молодые биопленки. Большое количество лабораторий в настоящее время пытается выявить гены, которые экспрессируются или наоборот репрессируются во время начального формирования биопленки, что также может служить отправной точкой для появления диагностических тестов или выработки стратегии подавления биопленок на генном уровне.

Реально в медицине только начинают понимать значение микробных сообществ, организованных в биопленки. Очевидно, что бактериальные клетки могут объединяться в специфические дифференцированные трехмерные структуры, показывая слаженное поведение, что радикально меняет представления, господствовавшие в медицинской микробиологии. Только на начальном этапе находится процесс создания реалистичных моделей естественных микробных сообществ в лабораторных условиях [106, 107].

На данный момент наиболее перспективными представляются следующие направления борьбы с биопленками:

предотвращение первичного инфицирования имплантата,

минимизация начальной адгезии микробных клеток,

разработка методов проникновения через матрикс биопленки различных биоцидов с целью подавления активности связанных биопленкой клеток

разрушение матрикса

Вто же время, нельзя считать дальновидной направленность научного поиска исключительно на борьбу с биопленками. Не менее важным является более детальное изучение тонких механизмов взаимодействия макроорганизма с колонизирующими его микробными биопленками с целью разработки возможных альтернативных подходов в терапии.

30

1.Davey M. E. and G. A. O'Toole Microbial Biofilms: from Ecology to Molecular Genetics Microbiology and Molecular Biology Reviews Dec. 2000, p. 847-867 Vol. 64, No. 4

2.Costerton, J. W., Z. Lewandowski, D. E. Caldwell, D. R. Korber, and H.

M.Lappin-Scott. 1995. Microbial biofilms. Annu. Rev. Microbiol. 49:711-745

3.Costerton, J. W., G. G. Geesey, and G. K. Cheng. 1978. How bacteria stick.Sci. Am. 238:86-95

4.Carpentier, В., and O. Cerf. 1993. Biofilms and their consequences, with particular reference to hygiene in the food industry. J. Appl. Bacteriol.75:499-511

5.Christensen, В. Е. 1989. The role of extracellular polysaccharides in biofilms. J. Biotechnol. 10:181-202

6.Donlan Rodney M. and J. William Costerton Biofilms: Survival Mechanisms of Clinically Relevant Microorganisms Clinical Microbiology Reviews, Apr. 2002, p. 167-193 Vol. 15, No. 2

7.Costerton, J. W., P. S. Stewart, and E. P. Greenberg. 1999. Bacterial biofilms: a common cause of persistent infections. Science 284:13181322

8.Froeliger E. H. and P. Fives-Taylor Streptococcus parasanguis FimbriaAssociated Adhesin Fapl Is Required for Biofilm Formation Infection and Immunity, April 2001, p. 2512-2519, Vol. 69, No. 4

9.Gristina, A. G., J. J. Dobbins, B. Giammara, J. С Lewis, and W. С DeVreies. 1988. Biomaterial-centered sepsis and the total artificial heart.JAMA 259:870874.

10.Neu, T. R., G. J. Verkerke, I. F. Herrmann, H. K. Schutte, H. С Van der Mci, and H. J. Busscher. 1994. Microflora on explanted silicone rubber voice protheses: taxonomy, hydrophobicity and electrophoretic mobility.

J.Appl. Bacteriol. 76:521528

11.O'Toole, G. A., and R. Kolter. 1998. The initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signaling pathways: a genetic analysis. Mol. Microbiol. 28:449-461

12.Rioufol, С, С Devys, G. Mcunier, M. Perraud, and D. Goullet. 1999. Quantitative determination of endotoxins released by bacterial biofilms. J.Hosp. Infect. 43:203-209.

13.Vincent, F. C, A. R. Tibi, and J. С Darbord. 1989. A bacterial biofilm in a hemodialysis system. Assessment of disinfection and crossing of endotoxin. ASAIO Trans. 35:310-313.

14.Shiau, A.-L., and C.-L. Wu. 1998. The inhibitory effect of Staphylococcus

epidermidis slime on the phagocytosis of murine peritoneal macrophages is interferon-independent. Microbiol. Immunol. 42:33-40.

31

15..Ward, К. Н., М. Е. Olson, К. Lam, and J. W. Costerton. 1992. Mechanism of persistent infection associated with peritoneal implants. J. Med. Microbiol. 36:406-413.

16.Roberts, A. P., J. Pratten, M. Wilson, and P. Mullany. 1999. Transfer of a conjugative transposon, Tn5397 in a model oral biofilm. FEMS Microbiol. Lett. 177:63-66.

17.Ehlers, L. J., and E. J. Bouwer. 1999. RP4 plasmid transfer among species of Pseudomonas in abiofilm reactor. Water Sci. Technol. 7:163-171.

18.Livornese, L. L., and О. М. Korzeniowski. 1992. Pathogenesis of infective endocarditis, p. 19-35. In D. Kaye [ed.], Infective endocarditis, 2nd ed. Raven Press, New York, N.Y.

19.Lowrance, J. H., L. M. Baddour, and W. A. Simpson. 1990. The role of fibronectin binding on the rate model of experimental endocarditis caused by Streptococcus sanguis. J. Clin. Investig. 86:7-13

20.Roberts, R. B. 1992. Streptococcal endocarditis: the viridins and beta hemolytic streptococci, p. 191-208. In D. Kaye [ed.], Infective endocarditis, 2nd ed. Raven Press, New York, N.Y.

21.Dall, L., W. G. Barnes, J. W. Lane, and J. Mills. 1987. Enzymatic modifi­ cation of glycocalyx in the treatment of experimental endocarditis due toviridins streptococci. J. Infect. Dis. 156:736-740

22.Durack, D. T. 1975. Experimental bacterial endocarditis. IV. Structure and evolution of very early lesions. J. Pathol. 115:81-89

23.Durack, D. Т., and P. B. Beeson. 1972. Experimental bacterial endocarditis II. Survival of bacteria in endocardial vegetations. Br. J. Pathol. 53:50-53

24.Ferguson, D. J. P., A. A. McColm, D. M. Ryan, and P. Acred. 1986. A morphological study of experimental staphylococcal endocarditis and aortitis. II. Interrelationship of bacteria, vegetation and cardiovasculature in established infections. Br. J. Exp. Pathol. 67:679-686

25.Braunwald, E. 1997. Valvular heart disease, p. 1007-1076. In E. Braunwald [ ed.], Heart disease, 5th ed., vol. 2. W. B. Saunders Co., Philadelphia, Pa.

26.Hancock, E. W. 1994. Artificial valve disease, p. 1539-1545. In R. C.Schlant, R. W. Alexander, R. A. O'Rourke, R. Roberts, and E. H. Sonnenblick [ ed.], The heart arteries and veins, 8th ed., vol. 2. McGrawHill,Inc., New York, N.Y

27.Douglas, J. L., and С G. Cobbs. 1992. Prosthetic valve endocarditis, p.375-396. In D. Kaye [ ed.], Infective endocarditis, 2nd ed. Raven Press Ltd.,New York, N.Y

28.Karchmer, A. W., and G. W. Gibbons. 1994. Infections of prosthetic heart valves and vascular grafts, p. 213-249. In A. L. Bisno and F. A. Waldvogel [ ed.], Infections associated with indwelling medical devices, 2nd ed. American Society for Microbiology, Washington, D.C.

32

29.Raad, I. 1998. Intravascular-catheter-related infections. Lancet 351:893898.

30.Anaissie, E., G. Samonis, D. Kontoyiannis, J. Costerton, U. Sabharwal, G. Bodey, and I. Raad. 1995. Role of catheter colonization and infrequent hematogenous seeding in catheter-related infections. Eur. J. Clin. Microbiol.Infect. Dis. 14:135-137

31.Rupp, M. E., J. S. Ulphani, P. D. Fey, and D. Mack. 1999. Characterization of Staphylococcus epidermidis polysaccharide intercellular adhesin/hemag-glutinin in the pathogenesis of intravascular catheter-associated infection in a rat model. Infect. Immun. 67:2656-2659.

32.Murga, R., J. M. Miller, and R. M. Donlan. 2001. Biofilm formation by gram-negative bacteria on central venous catheter connectors: effect of conditioning films in a laboratory model. J. Clin. Microbiol. 39:22942297.

33.Illingworth, B. L., K. Twenden, R. F. Schroeder, and J. D. Cameron. 1998. In vivo efficacy of silver-coated [ silzone] infection-resistant

polyester fabric against a biofilm-producing bacteria, Staphylococcus epidermidis. J. Heart Valve Dis. 7:524-530

34.Kjaergard, H. K., J. Tingleff, U. Abildgaard, and G. Pettersson. 1999. Recurrent endocarditis in silver-coated heart valve prosthesis. J. Heart Valve Dis. 8:140-142

35.Cook, G., J. W. Costerton, and R. O. Darouiche. 2000. Direct confocal microscopy studies of the bacterial colonization in vitro of a silver-coated heart valve sewing cuff. Int. J. Antimicrob. Agents 13:169-173.

36.Maki, D. G. 1994. Infections caused by intravascular devices used for infusion therapy: pathogenesis, prevention, and management, p. 155-212. In A. L. Bisno and F. A. Waldovogel [ ed.], Infections associated with indwelling medical devices, 2nd ed. American Society for Microbiology, Washington, D.C

37.Maki, D. G., and J. D. Band. 1981. A comparative study of polyantibiotic and iodophor ointments in prevention of vascular catheter-related infection. Am. J. Med. 70:739-744.

38.Veenstra, D. L., S. Saint, S. Saha, T. Lumley, and S. D. Sullivan. 1999.Efficacy of antiseptic-impregnated central venous catheters in

preventing catheter-related bloodstream infection. JAMA 281:261-267

39.Darouiche, R. O. 1999. Anti-infective efficacy of silver-coated medical prostheses. Clin. Infect. Dis. 29:1371-1377.

40.O'Toole, G. A., H. Kaplan, and R. Kolter. 2000. Biofilm formation as microbial development. Annu. Rev. Microbiol. 54:49-79

41.Davies, D. G., M. R. Parsek, J. P. Pearson, B. H. Iglewski, J. W. Costerton, and E. P. Grcenberg. 1998. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295-298.

33

42.- Prigent-Combaret, С, О. Vidal, С. Dorel, and P. Lejeune. 1999. Abiotic surface sensing and biofilm-dependent regulation of gene expression in Escherichia coli. J. Bacteriol. 181:5993-6002.

43.Fletcher, M., and J. H. Pringle. 1986. Influence of substratum hydration and absorbed macromolecules on bacterial attachment to surfaces. Appl.Environ. Microbiol. 51:1321-1325

44.Nyvad, В., and M. Kilian. 1990. Comparison of the initial streptococcal microflora on dental enamel in caries-active and in caries-inactive individuals. Caries Res. 24:267-272

45.O'Toole, G. A., K. A. Gibbs, P. W. Hager, P. V. Phibbs, Jr., and R. Kolter. 2000a. The global carbon metabolism regulator Crc is a component of a signal transduction pathway required for biofilm development by Pseudomonas aeruginosa. J. Bacteriol. 182:425-431.

46.Poulsen, L. K., G. Ballard, and D. A. Stahl. 1993. Use of rRNA fluores­ cence in situ hybridization for measuring the activity of single cells in young and established biofilms. Appl. Environ. Microbiol. 59:1354-1360.

47.Stanley, P. M. 1983. Factors affecting the irreversible attachment of Pseudomonas aeruginosa to stainless steel. Can. J. Microbiol. 29:14931499

48.Pratt, L. A., and R. Kolter. 1998. Genetic analysis of Escherichia coli biofilm formation: defining the roles of flagella, motility, chemotaxis and type I pili. Mol. Microbiol. 30:285-294.

49.Characklis, W. G., and К. С Marshall [ed.]. 1990a. Biofilms. John Wiley & Sons, Inc., New York, N.Y.

50.An, Y. H., R. B. Dickinson, and R. J. Doyle. 2000. Mechanisms of bacterial adhesion and pathogenesis of implant and tissue infections, p. 1- 27. In Y. H. An and R. J. Friedman [ed.], Handbook of bacterial adhesion: principles, methods, and applications. Humana Press, Totowa, N.J

51.Boland, Т., R. A. Latour, and F. J. Sutzenberger. 2000. Molecular basis of bacterial adhesion, p. 29-41. In Y. H. An and R. J. Friedman [ed.], Handbook of bacterial adhesion: principles, methods, and applications, 1st ed. Humana Press, Totowa, N.J

52.Wang, I.-W., J. M. Anderson, and R. E. Marchant. 1993. Staphylococcus epidermidis adhesion to hydrophobic biomedical polymer is mediated by platelets. J. Infect. Dis. 167:329-336

53.Herrmann, M., P. E. Baudaux, D. Pittet, R. Auckenthaler, P. D. Lew, F. Schumacher-Perdreau, G. Peters, and F. A. Waldvogel. 1988. Fibronectin, fibrinogen, and laminin act as mediators of adherence of clinical staphylococcal isolates to foreign material. J. Infect. Dis. 158:693-701

54.Dunne, W. M., and E. M. Burd. 1993. Fibronectin and proteolytic fragments of fibronectin interfere with the adhesion of Stahpylococcus epidermidis to plastic. J. Appl. Bacteriol. 74:411-416.

34

55.Jucker, В. A., H. Harms, and A. J. B. Zehnder. 1996. Adhesion ol ilic positively charged bacterium Stenotrophomonas \Xanlhoinou<is\ maltophilia 70401 to glass and Teflon. J. Bacteriol. 178:5472-5479.

56.Hcilmann, С, С Gerke, F. Perdreau-Remington, and F. Gotz. I9')d. Characterization of Tn977 insertion mutants of Staphylococcus epidermidis affected in biofilm formation. Infect. Immun. 64:277-282.

57.Hcilmann, C, O. Schweitzer, C. Gerke, N. Vanittanakom, D. Mack, and F. Gotz. 1996a. Molecular basis of intercellular adhesion in the biofilmforming Staphylococcus epidermidis. Mol. Microbiol. 20:1083-1091

58.Mack, D., M. Nedelmann, A. Krokotsch, A. Schwarzkopf, J. Heesemann, and R. Laufs. 1994. Characterization of transposon mutants of

biofilmproducing Staphylococcus epidermidis impaired in the accumulative phase of biofilm production: genetic identification of a hexosaminecontaining polysaccharide intercellular adhesin. Infect. Immun. 62:3244-3253.

59.Mack, D., W. Fischer, A. Krokotsch, K. Leopold, R. Hartmann, H. Egge,and R. Laufs. 1996. The intercellular adhesin involved in biofilm accumulation of Staphylococcus epidermidis is a linear -1-6-linked glucosaminoglycan: purification and structural analysis. J. Bacteriol. 178:175-183

60.Costerton, J. W., K.-J. Cheng, G. G. Geesey, T. I. Ladd, J. С Nickel, M. Dasgupta, and T. J. Marrie. 1987. Bacterial biofilms in nature and disease. Annu. Rev. Microbiol. 41:435-464.

61.Wolfaardt, G. M., J. R. Lawrence, R. D. Roberts, S. J. Caldwell, and D. E. Caldwell. 1994. Multicellular organization in a degradative biofilm community. Appl. Environ. Microbiol. 60:434-446

62.Marsh P. D.Are dental diseases examples of ecological catastrophes? Microbiology [2003], 149, 279-294

63.La Tourette Prosser, B, D. Taylor, B. A. Dix, and R. Cleeland. 1987. Method of evaluating effects of antibiotics on bacterial biofilm. Antimicrob. Agents Chemother. 31:1502-1506

64.Allison, D. G., B. Ruiz, С SanJose, A. Jaspe, and P. Gilbert. 1998. Extracellular products as mediators of the formation and detachment of Pseudomonasfluorescens biofilms. FEMS Microbiol. Lett. 167:179-184.

65.McLean, J. J. C, M. Whitcly, D. J. Strickler, and W. С Fuqua. 1997. Evidence of autoinducer activity in naturally occurring biofilms. FEMS Microbiol. Lett. 154:259-263

66.Stickler, D. J., N. S. Morris, R. J. С McLean, and С Fuqua. 1998. Biofilms on indwelling urethral catheters produce quorum-sensing signal molecules in situ and in vitro. Appl. Environ. Microbiol. 64:3486-3490

67.Watnick P. and R.Koltcr Biofilm, City of Microbes Journal of Bacteriology , May 2000, p. 2675-2679 Vol. 182, No. 10

35

68.'Kinner, N. E., D. L. Balkwill, and P. L. Bishop. 1983. Light and electron microscopic studies of microorganisms growing in rotating biological contactor biofilms. Appl. Environ. Microbiol. 45:1659-1669.

69.Lawrence, J. R., P. J. Delaquis, D. R. Korber, and D. E. Caldwell. 1987. Behavior of Pseudomonas fluorescens within the hydrodynamic boundary layers of surface microenvironments. Microb. Ecol. 14:1-14.

70.Robinson, R. W., D. E. Akin, R. A. Nordstedt, M. V. Thomas, and H. С Aldrich. 1984. Light and electron microscopic examinations of methaneproducing biofilms from anaerobic fixed-bed reactors. Appl. Environ. Microbiol.48:127-136

71.Raad, I., W. Costerton, U. Sabharwal, M. Sacilowski, W. Anaissie, and G.

P.Bodey. 1993. Ultrastructural analysis of indwelling vascular catheters: a quantitative relationship between luminal colonization and duration of placement. J. Infect. Dis. 168:400-407

72.Stoodley, P., D. DeBeer, and Z. Lewandowski. 1994. Liquid flow in biofilm systems. Appl. Environ. Microbiol. 60:2711-2716.

73.Flemming, H.-C. 1993. Biofilms and environmental protection. Water Sci.Technol. 27: 1-10

74.Gilbert, P., J. Das, and I. Foley. 1997. Biofilms susceptibility to antimicrobials. Adv. Dent. Res. 11:160-167

75.Lewis, K. 2000. Programmed death in bacteria. Microbiol. Mol. Biol. Rev.64:503-514.

76.Maira-Litran, Т., D. G. Allison, and P. Gilbert. 2000. An evaluation of the potential of the multiple antibiotic resistance operon [max] and the multi­ drug efflux pump acrAB to moderate resistance towards ciprofloxacin in Escherichia со//biofilms. J. Antimicrob. Chemother. 45:789-795

77.Lewis, K.. Riddle of Biofilm Resistance Antimicrobial agents and Chemotherapy, Apr. 2001, p. 999-1007 Vol. 45, No. 4

78.Elkins, J. G., D. J. Hassett, P. S. Stewart, H. P. Schweizer, and T. R. McDermott. 1999. Protective role of catalase in Pseudomonas aeruginosa biofilm resistance to hydrogen peroxide. Appl. Environ. Microbiol. 65:4594-4600.

79.Hassett, D. J., J. F. Ma, J. G. Elkins, T. R. McDermott, U. A. Ochsner, S. E.West, С. Т. Huang, J. Fredericks, S. Burnett, P. S. Stewart, G. McFeters, L.Passador, and В. Н. Iglewski. 1999. Quorum sensing in Pseudomonas aeruginosacontroh expression of catalase and superoxide dismutase genes and mediates biofilm susceptibility to hydrogen peroxide. Mol. Microbiol. 34: 1082-1093.

80.Nichols, W. W., M. J. Evans, M. P. E. Slack, and H. L. Walmsley. 1989. The penetration of antibiotics into aggregates of mucoid and non-mucoid Pseudomonas aeruginosa. J. Gen. Microbiol. 135:1291-1303

81.Ishida, H., Y. Ishida, Y. Kurosaka, T. Otani, K. Sato, and H. Kobayashi. 1998. In vitro and in vivo activities of levofloxacin against biofilm-

36

producing Psendomonas aeruginosa.. Antimicrob. Agents Chemother. 42:1641-1645.

82.Hoyle, B. D., С. К. W. Wong, and J. W. Costerton. 1992. Disparate efficacy of tobramycin on Ca 2 ~'Mg 2", and HEPES-treated Pseudomonas aeruginosabiofums. Can. J. Microbiol. 38:1214-1218

83.Hatch, R. A., and N. L. Schiller. 1998. Alginate lyase promotes diffusion of aminoglycosides through the extracellular polysaccharide of mucoid Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 42:974-977.

84.Gordon, С A., N. A. Hodges, and С Marriott. 1988. Antibiotic interaction and diffusion through alginate and exopolysaccharide of cystic fibrosis-derived Pseudomonas aeruginosa. J. Antimicrob. Chemother. 22:667-674

85.Souli, M., and H. Giamarellou. 1998. Effects of slime produced by clinical isolates of coagulase-negative staphylococci on activities of various antimicrobial agents. Antimicrob. Agents Chemother. 42:939-941.

86.Farber, B. F., M. H. Kaplan, and A. G. Clogston. 1990. Staphylococcus epidermidis extracted slime inhibits the antimicrobial action of glycopeptide antibiotics. J. Infect. Dis. 161:37-40.

87.Dunne, W. M., Jr., E. O. Mason, Jr., and S. L. Kaplan. 1993a. Diffusion of rifampin and vancomycin through a Staphylococcus epidermidis biofilm. Antimicrob. Agents Chemother. 37:2522-2526.

88.Brooun, A., S. Liu, and K. Lewis. 2000. A dose-response study of antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrob. Agents Chemo-ther. 44:640-646.

89.Suci, P. A., M. W. Mittelman, F. P. Yu, and G. G. Geesey. 1994. Investigation of ciprofloxacin penetration into Pseudomonas aeruginosa biofilms. Antimicrob. Agents Chemother. 38:2125-2133

90.Stewart, P. S. 1996. Theoretical aspects of antibiotic diffusion into microbial biofilms. Antimicrob. Agents Chemother. 40:2517-2522

91.DuGuid, I. G., E. Evans, M. R. W. Brown, and P. Gilbert. 1990. Growth- rate-dependent killing by ciprofloxacin of biofilm-derived Staphylococcus epidermidis; evidence for cell-cycle dependency. J. Antimicrob. Chemother. 30:791-802

92.Anwar, H., J. L. Strap, K. Chen, and J. W. Costerton. 1992. Dynamic interactions of biofilms of mucoid Pseudomonas aeruginosa with tobramycin and piperacillin. Antimicrob. Agents Chemother. 36:12081214

93.Chuard, C, P. Vaudaux, F. A. Waldovogel, and D. P. Lew. 1993. Susceptibility of Staphylococcus aureus growing on fibronectin-coated surfaces to bactericidal antibiotics. Antimicrob. Agents Chemother. 37:625-632

94.Amorena, В., E. Gracia, M. Monzon, J. Leiva, C. Oteiza, M. Perez, J.-L. Alabart, and J. Hernandez-Yago. 1999. Antibiotic susceptibility assay for

37

Staphylococcus aureus in biofilms developed in vitro. J. Antimicrob. Chemother. 44:43-55.

95.Eng, R. H. K., F. T. Padbcrg, S. M. Smith, E. N. Tan, and С. Е. Cherubin. 1991. Bactericidal effects of antibiotics on slowly growing and

nongrowing bacteria. Antimicrob. Agents Chemother. 35:1824-1828.

96.Jorgensen, J. H., J. D. Turnidge, and J. A. Washington. 1999. Antibacterial susceptibility tests: dilution and disk diffusion methods, p. 1526-1543. In P. R. Murray, E. J. Baron, M. A. Pfaller, F. С Tcnover, and R. H. Yolken [ed.], Manual of clinical microbiology, 7th ed. ASM Press, Washington, D.C

97.Dagostino, L., A. E. Goodman, and К. С Marshall. 1991. Physiological responses induced in bacteria adhering to surfaces. Biofouling 4:113-119.

98.Hoyle, B. D., J. Jass, and J. W. Costerton. 1990. The biofilm glycocalyx as a resistance factor. J. Antimicrob. Chemother. 26:1-5

99.Gibson, FL, J. H. Taylor, K. E. Hall, and J. T. Holah. 1999. Effectiveness

of cleaning techniques used in the food industry in terms of the removal of bacterial biofilms. J. Appl. Microbiol. 87:41-48

100.Johansen, C, P. Falholt, and L. Gram. 1997. Enzymatic removal and disinfection of bacterial biofilms. Appl. Environ. Microbiol. 63:37243728.

lOl.Widmer, A. F., R. Frei, Z. Rajacic, and W. Zimmerli. 1990. Correlation between in vivo and in vitro efficacy of antimicrobial agents against foreign body infections. J. Infect. Dis. 162:96-102.

102.Blenkinsopp, S. A., A. E. Khoury, and J. W. Costerton. 1992. Electrical enhancement of biocide efficacy against Pseudomonas aeruginosa biofilms. Appl. Environ. Microbiol. 58:3770-3773.

103.Zips, A., G. Schaule, and H. С Flemming. 1990. Ultrasound as a means ofdetaching biofilms. Biofouling 2:323-333.

104.Huang, C.-T., G. James, W. G. Pitt, and P. S. Stewart. 1996. Effects of ultrasonic treatment on the efficacy of gentamicin against established Pseudomonas aeruginosa biofilms. Colloids Surfaces В Biointerfaces 6:235-242.

105.Hartman, G., and R. Wise. 1998. Quonim sensing: potential means of treating gram-negative infections? Lancet 351:848-849.

106.Kinniment, S. L., J. W. T. Wimpenny, D. Adams, and P. D. Marsh. 1996. Development of a steady-state oral microbial biofilm community using the constant-depth film fermenter. Microbiology 142:631-638.

107.Sissons, С H. 1997. Artificial dental plaque biofilm model systems. Adv. Dent. Res. 11:110-126.

38